Skip to content
Snippets Groups Projects
Commit e2862e54 authored by Tobias WEBER's avatar Tobias WEBER
Browse files

continued with lecture notes

parent 349592ac
No related branches found
No related tags found
No related merge requests found
@book
{
Merzbacher1998,
author = {Merzbacher, E.},
title = {{Quantum Mechanics, Third Edition}},
year = {1998},
publisher = {John Wiley},
isbn = {0-471-88702-1},
}
@book
{
Shirane2002,
......
......@@ -194,7 +194,9 @@ Angle $\xi$ between $\left| Q \right>$ and orientation vector $\left| a \right>$
\begin{equation} \xi = \sigma_{\mathrm{side}} \cdot \arccos \left( \frac{ \left< Q | a \right> }{ \sqrt{\left< Q | Q \right>} \sqrt{\left< a | a \right>} } \right) \end{equation}
\begin{equation} \boxed{ \xi = \sigma_{\mathrm{side}} \cdot \arccos \left( \frac{ Q^i g_{ij} a^j }{ \sqrt{Q^i g_{ij} Q^j} \sqrt{a^i g_{ij} a^j} } \right) } \end{equation}
The sign, $\sigma_{\mathrm{side}}$, of $\xi$ depends on which side of the orientation vector $\left| a \right>$ the scattering vector $\left| Q \right>$ is located. The sign can be found by calculating the (covariant) cross product of $\left| a \right>$ and $\left| Q \right>$ to give an out-of-plane vector which can be compared with the given scattering plane up vector.
The sign, $\sigma_{\mathrm{side}}$, of $\xi$ depends on which side of the orientation vector $\left| a \right>$ the scattering vector $\left| Q \right>$
is located. The sign can be found by calculating the (covariant) cross product of $\left| a \right>$ and $\left| Q \right>$ to give an out-of-plane vector
which can be compared with the given scattering plane up vector.
\paragraph*{Special case}
......@@ -208,7 +210,80 @@ Special case for cubic crystals, $g_{ij} = \delta_{ij} \cdot \left( 2\pi / a \ri
% ====================================================================================================================================
\chapter{Neutron Scattering Cross-Sections}
\chapter{Neutron Scattering}
\begin{center}
\includegraphics[width = 0.75 \textwidth]{recip}
\end{center}
\section{Nuclear Scattering}
The cross-sections for neutron scattering are derived in \cite[Ch. 2]{Squires2012} of which we summarise the most important results here.
An excellent overview can also be found in \cite[Ch. 2]{Shirane2002}.
The double-differential cross-section is the number of neutrons that are scattered into a solid angle $d\Omega$ and energy range
$\left[ E_f, E_f + dE \right]$, normalised to time $t$, Flux $\Phi$, $d\Omega$, and $dE$ \cite[p. 10]{Squires2012},
\begin{equation}
\left(\frac{d^2 \sigma}{d\Omega dE_f}\right)_{i \rightarrow f} = \frac{1}{\Phi \cdot d\Omega \cdot dE_f} \cdot R_{i \rightarrow f},
\end{equation}
where the transition rate $R_{i \rightarrow f}$ is given by Fermi's Golden Rule \cite[p. 509]{Merzbacher1998}:
\begin{equation}
R_{i \rightarrow f} = \frac{2\pi}{\hbar} \left| \left< i | V | f \right> \right|^2 \cdot N_f,
\end{equation}
with the number of final states, $N_f$, in the range $\left[ E_f, E_f + dE \right]$.
Neutron-nuclear scattering is described using the Fermi pseudo-potential $V$ \cite[p. 15]{Squires2012}:
\begin{equation}
V \left( \bm{r} \right) = \frac{2\pi \hbar^2}{m_n} \cdot b \cdot \delta \left( \bm{r} \right),
\end{equation}
\begin{equation}
V \left( \bm{Q} \right) = \frac{2\pi \hbar^2}{m_n} \cdot b.
\end{equation}
Summing over all available final states $\left| f \right>$ and thermally averaging over the initial states $\left| i \right>$,
results in \cite[p. 20]{Squires2012}:
\begin{equation}
\boxed{ \frac{d^2 \sigma}{d\Omega dE_f} = \frac{1}{2\pi \hbar} \cdot \frac{k_f}{k_i} \cdot
\sum_{kl}{b_k b_l \int{dt \cdot
\exp{ \left( -\imath \omega t \right)} \cdot
\left<
\exp{\left( -\imath \bm{Q} \cdot \bm{\hat{R}_k} \left(t=0 \right) \right)}
\exp{\left(\imath \bm{Q} \cdot \bm{\hat{R}_l} \left(t \right) \right)}
\right>_{\mathrm{therm.}} }}, }
\end{equation}
with the Heisenberg operators $\bm{\hat{R}_l} \left(t \right)$.
Averaging the scattering lengths $b_k b_l$ into an effective $b$ leads to two distinct contributions to the scattering
cross section \cite[p. 22]{Squires2012}:
\begin{equation} \begin{split}
\frac{d^2 \sigma}{d\Omega dE_f} & =
\frac{1}{2\pi \hbar} \cdot \frac{k_f}{k_i} \cdot
\left< b \right> ^2 \cdot
\sum_{kl}{ \int{dt \cdot
\exp{ \left( -\imath \omega t \right)} \cdot
\left<
\exp{\left( -\imath \bm{Q} \cdot \bm{\hat{R}_k} \left(t=0 \right) \right)}
\exp{\left(\imath \bm{Q} \cdot \bm{\hat{R}_l} \left(t \right) \right)}
\right>_{\mathrm{therm.}} }} \\
& + \frac{1}{2\pi \hbar} \cdot \frac{k_f}{k_i} \cdot
\underbrace{\left( \left< b^2 \right> - \left< b \right>^2 \right)}_{\equiv b_{inc}^2} \cdot
\sum_{k}{ \int{dt \cdot
\exp{ \left( -\imath \omega t \right)} \cdot
\left<
\exp{\left( -\imath \bm{Q} \cdot \bm{\hat{R}_k} \left(t=0 \right) \right)}
\exp{\left(\imath \bm{Q} \cdot \bm{\hat{R}_k} \left(t \right) \right)}
\right>_{\mathrm{therm.}} }}.
\end{split} \end{equation}
The first term of the sum is the coherent contribution (i.e. collective phenomena: phonons, Bragg peaks),
the second one the incoherent contribution (spin- and nuclear-incoherent peaks, diffuse scattering).
% ------------------------------------------------------------------------------------------------------------------------------------
\section{Magnetic Scattering}
% ====================================================================================================================================
......@@ -224,7 +299,7 @@ Special case for cubic crystals, $g_{ij} = \delta_{ij} \cdot \left( 2\pi / a \ri
\bibliographystyle{unsrtnat}
\bibliographystyle{alpha}
\bibliography{\jobname.bib}
\end{document}
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment