Skip to content
Snippets Groups Projects
Proteins.py 33.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • Jamie Hall's avatar
    Jamie Hall committed
    # This module implements classes for peptide chains and proteins.
    #
    # Written by Konrad Hinsen
    #
    
    """
    Peptide chains and proteins
    """
    
    __docformat__ = 'restructuredtext'
    
    from MMTK import Biopolymers, Bonds, ChemicalObjects, Collections, \
                     ConfigIO, Database, Units, Universe, Utility
    from Scientific.Geometry import Vector
    
    from MMTK.Biopolymers import defineAminoAcidResidue
    
    #
    # Residues are special groups
    #
    class Residue(Biopolymers.Residue):
    
        """
        Amino acid residue
    
        Amino acid residues are a special kind of group. They are defined
        in the chemical database. Each residue has two subgroups
        ('peptide' and 'sidechain') and is usually connected to other
        residues to form a peptide chain. The database contains three
        variants of each residue (N-terminal, C-terminal,
        non-terminal) and various models (all-atom, united-atom,
        |C_alpha|).
        """
    
        def __init__(self, name = None, model = 'all'):
            """
            :param name: the name of the residue in the chemical database. This
                         is the full name of the residue plus the suffix
                         "_nt" or "_ct" for the terminal variants.
            :type name: str
            :param model: one of "all" (all-atom), "none" (no hydrogens),
                          "polar" (united-atom with only polar hydrogens),
                          "polar_charmm" (like "polar", but defining
                          polar hydrogens like in the CHARMM force field),
                          "polar_opls" (like "polar", but defining
                          polar hydrogens like in the latest OPLS force field),
                          "calpha" (only the |C_alpha| atom).
            :type model: str
            """
            if name is not None:
                blueprint = _residueBlueprint(name, model)
                ChemicalObjects.Group.__init__(self, blueprint)
                self.model = model
                self._init()
    
        def _init(self):
            Biopolymers.Residue._init(self)
            # create peptide attribute for calpha model
            if self.model == 'calpha':
                self.peptide = self
    
        def isNTerminus(self):
            return hasattr(self.peptide, 'H_3')
    
        def isCTerminus(self):
            return hasattr(self.peptide, 'O_2')
    
        def _makeCystine(self):
            if self.model == 'calpha':
                return self
            if self.symbol.lower() != 'cys':
                raise ValueError(`self` + " is not cysteine.")
            new_residue = 'cystine_ss'
            if self.isNTerminus():
                new_residue = new_residue + '_nt'
            elif self.isCTerminus():
                new_residue = new_residue + '_ct'
            new_residue = Residue(new_residue, self.model)
            for g in ['peptide', 'sidechain']:
                g_old = getattr(self, g)
                g_new = getattr(new_residue, g)
                for a in getattr(g_new, 'atoms'):
                    set_method = getattr(getattr(g_new, a.name), 'setPosition')
                    set_method(getattr(getattr(g_old, a.name), 'position')())
            return new_residue
    
        def isSubsetModel(self):
            return self.model == 'calpha'
    
        def backbone(self):
            """
            :returns: the peptide group
            :rtype: :class:`~MMTK.ChemicalObjects.Group`
            """
            return self.peptide
    
        def sidechains(self):
            """
            :returns: the sidechain group
            :rtype: :class:`~MMTK.ChemicalObjects.Group`
            """
            return self.sidechain
    
        def phiPsi(self, conf = None):
            """
            :returns: the values of the backbone dihedral angles phi and psi.
            :rtype: tuple (float, float)
            """
            universe = self.universe()
            if universe is None:
                universe = Universe.InfiniteUniverse()
            C = None
            for a in self.peptide.N.bondedTo():
                if a.parent.parent != self:
                    C = a
                    break
            if C is None:
                phi = None
            else:
                phi = universe.dihedral(self.peptide.C, self.peptide.C_alpha,
                                        self.peptide.N, C, conf)
            N = None
            for a in self.peptide.C.bondedTo():
                if a.parent.parent != self:
                    N = a
                    break
            if N is None:
                psi = None
            else:
                psi = universe.dihedral(N, self.peptide.C, self.peptide.C_alpha,
                                        self.peptide.N, conf)
            return phi, psi
    
        def phiAngle(self):
            """
            :returns: an object representing the phi angle and allowing to modify it
            :rtype: MMTK.InternalCoordinates.DihedralAngle
            """
            from MMTK.InternalCoordinates import DihedralAngle
            C = None
            for a in self.peptide.N.bondedTo():
                if a.parent.parent != self:
                    C = a
                    break
            if C is None:
                raise ValueError("residue is N-terminus")
            return DihedralAngle(self.peptide.C, self.peptide.C_alpha,
                                 self.peptide.N, C)
    
        def psiAngle(self):
            """
            :returns: an object representing the psi angle and allowing to modify it
            :rtype: MMTK.InternalCoordinates.DihedralAngle
            """
            from MMTK.InternalCoordinates import DihedralAngle
            N = None
            for a in self.peptide.C.bondedTo():
                if a.parent.parent != self:
                    N = a
                    break
            if N is None:
                raise ValueError("residue is C-terminus")
            return DihedralAngle(N, self.peptide.C, self.peptide.C_alpha,
                                 self.peptide.N)
    
        def chiAngle(self):
            """
            :returns: an object representing the chi angle and allowing to modify it
            :rtype: MMTK.InternalCoordinates.DihedralAngle
            """
            from MMTK.InternalCoordinates import DihedralAngle
            try:
                C_beta = self.sidechain.C_beta
            except AttributeError:
                raise ValueError("no C_beta in sidechain")
            X = None
            for atom_name in ['C_gamma', 'C_gamma_1', 'S_gamma',
                              'O_gamma', 'O_gamma_1', 'H_beta_1']:
                try:
                    X = getattr(self.sidechain, atom_name)
                    break
                except AttributeError:
                    pass
            if X is None:
                raise ValueError("no sidechain reference atom found")
            return DihedralAngle(self.peptide.N, self.peptide.C_alpha,
                                 C_beta, X)
    
    
    def _residueBlueprint(name, model):
        try:
            blueprint = _residue_blueprints[(name, model)]
        except KeyError:
            if model == 'polar':
                name = name + '_uni'
            elif model == 'polar_charmm':
                name = name + '_uni2'
            elif model == 'polar_oldopls':
                name = name + '_uni3'
            elif model == 'none':
                name = name + '_noh'
            elif model == 'calpha':
                name = name + '_calpha'
            blueprint = Database.BlueprintGroup(name)
            _residue_blueprints[(name, model)] = blueprint
        return blueprint
    
    _residue_blueprints = {}
    
    #
    # Peptide chains are molecules with added features.
    #
    class PeptideChain(Biopolymers.ResidueChain):
    
        """
        Peptide chain
    
        Peptide chains consist of amino acid residues that are linked
        by peptide bonds. They are a special kind of molecule, i.e.
        all molecule operations are available.
    
        Peptide chains act as sequences of residues. If p is a PeptideChain
        object, then
    
         * len(p) yields the number of residues
         * p[i] yields residue number i
         * p[i:j] yields the subchain from residue number i up to
                     but excluding residue number j
    
        :param sequence: the amino acid sequence. This can be a string
                         containing the one-letter codes, or a list
                         of three-letter codes, or a
                         :class:`~MMTK.PDB.PDBPeptideChain` object.
                         If a PDBPeptideChain object is supplied, the atomic
                         positions it contains are assigned to the atoms
                         of the newly generated peptide chain, otherwise the
                         positions of all atoms are undefined.
        :keyword model: one of "all" (all-atom), "no_hydrogens" or "none"
                        (no hydrogens), "polar_hydrogens" or "polar"
                        (united-atom with only polar hydrogens),
                        "polar_charmm" (like "polar", but defining
                        polar hydrogens like in the CHARMM force field),
                        "polar_opls" (like "polar", but defining
                        polar hydrogens like in the latest OPLS force field),
                        "calpha" (only the |C_alpha| atom of each residue).
                        Default is "all".
        :type model: str
        :keyword n_terminus: if True, the first residue is constructed
                             using the N-terminal variant, if False the
                             non-terminal version is used. Default is True.
        :type n_terminus: bool
        :keyword c_terminus: if True, the last residue is constructed
                             using the C-terminal variant, if False the
                             non-terminal version is used. Default is True.
        :type c_terminus: bool
        :keyword circular: if True, a peptide bond is constructed
                           between the first and the last residues.
                           Default is False.
        :type circular: bool
        :keyword name: a name for the chain (a string)
        :type name: str
    
        """
    
        def __init__(self, sequence, **properties):
            if sequence is not None:
                model = 'all'
                if properties.has_key('model'):
                    model = properties['model'].lower()
                elif properties.has_key('hydrogens'):
                    model = properties['hydrogens']
                    if model == 1: model = 'all'
                    elif model == 0: model = 'none'
                    else: model = model.lower()
                if model == 'no_hydrogens':
                    model = 'none'
                elif model == 'polar_hydrogens':
                    model = 'polar'
                n_term = self.binaryProperty(properties, 'n_terminus', True)
                c_term = self.binaryProperty(properties, 'c_terminus', True)
                circular = self.binaryProperty(properties, 'circular', False)
                self.version_spec = {'n_terminus': n_term,
                                     'c_terminus': c_term,
                                     'model': model,
                                     'circular': circular}
                if type(sequence[0]) == type(''):
                    conf = None
                    numbers = range(len(sequence))
                else:
                    conf = sequence
                    sequence = conf.sequence()
                    numbers = [r.number for r in conf]
                sequence = map(Biopolymers._fullName, sequence)
                if model != 'calpha':
                    if n_term:
                        sequence[0] = sequence[0] + '_nt'
                    if c_term:
                        sequence[-1] = sequence[-1] + '_ct'
    
                self.groups = []
                n = 0
                for residue, number in zip(sequence, numbers):
                    n = n + 1
                    r = Residue(residue, model)
                    r.name = r.symbol + str(number)
                    r.sequence_number = n
                    r.parent = self
                    self.groups.append(r)
    
                self._setupChain(circular, properties, conf)
    
        is_peptide_chain = True
    
        def __getslice__(self, first, last):
            return SubChain(self, self.groups[first:last])
    
        def sequence(self):
            """
            :returns: the primary sequence as a list of three-letter
                      residue codes.
            :rtype: list
            """
            return [r.symbol for r in self.groups]
    
        def backbone(self):
            """
            :returns: the peptide groups of all residues
            :rtype: :class:`~MMTK.Collections.Collection`
            """
            backbone = Collections.Collection()
            for r in self.groups:
                try:
                    backbone.addObject(r.peptide)
                except AttributeError:
                    pass
            return backbone
        
        def sidechains(self):
            """
            :returns: the sidechain groups of all residues
            :rtype: :class:`~MMTK.Collections.Collection`
            """
            sidechains = Collections.Collection()
            for r in self.groups:
                try:
                    sidechains.addObject(r.sidechain)
                except AttributeError:
                    pass
            return sidechains
    
        def phiPsi(self, conf = None):
            """
            :returns: a list of the (phi, psi) backbone angles for each residue
            :rtype: list of tuple of float
            """
            universe = self.universe()
            if universe is None:
                universe = Universe.InfiniteUniverse()
            angles = []
            for i in range(len(self)):
                r = self[i]
                if i == 0:
                    phi = None
                else:
                    phi = universe.dihedral(r.peptide.C, r.peptide.C_alpha,
                                            r.peptide.N,
                                            self[i-1].peptide.C, conf)
                if i == len(self)-1:
                    psi = None
                else:
                    psi = universe.dihedral(self[i+1].peptide.N,
                                            r.peptide.C, r.peptide.C_alpha,
                                            r.peptide.N, conf)
                angles.append((phi, psi))
            return angles
    
        def replaceResidue(self, r_old, r_new):
            """
            :param r_old: the residue to be replaced (must be part of the chain)
            :type r_old: Residue
            :param r_new: the residue that replaces r_old
            :type r_new: Residue
            """
            n = self.groups.index(r_old)
            for a in r_old.atoms:
                self.atoms.remove(a)
            obsolete_bonds = []
            for b in self.bonds:
                if b.a1 in r_old.atoms or b.a2 in r_old.atoms:
                    obsolete_bonds.append(b)
            for b in obsolete_bonds:
                self.bonds.remove(b)
            r_old.parent = None
            self.atoms.extend(r_new.atoms)
            self.bonds.extend(r_new.bonds)
            r_new.sequence_number = n+1
    
            if r_old.name.startswith(r_old.symbol):
                r_new.name = r_new.symbol+r_old.name[len(r_old.symbol):]
            else:
                r_new.name = r_new.symbol+`n+1`
    
    Jamie Hall's avatar
    Jamie Hall committed
    401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
            r_new.parent = self
            self.groups[n] = r_new
            if n > 0:
                peptide_old = self.bonds.bondsOf(r_old.peptide.N)
                if peptide_old:
                    self.bonds.remove(peptide_old[0])
                if not (self.groups[n-1].isCTerminus()
                        or self.groups[n].isNTerminus()):
                    # ConnectedChain objects can have N/C-terminal
                    # residues inside the (virtual) chain, so the
                    # test is necessary.
                    self.bonds.append(Bonds.Bond((self.groups[n-1].peptide.C,
                                                  self.groups[n].peptide.N)))
            if n < len(self.groups)-1:
                peptide_old = self.bonds.bondsOf(r_old.peptide.C)
                if peptide_old:
                    self.bonds.remove(peptide_old[0])
                if not (self.groups[n].isCTerminus()
                        or self.groups[n+1].isNTerminus()):
                    self.bonds.append(Bonds.Bond((self.groups[n].peptide.C,
                                                  self.groups[n+1].peptide.N)))
            if isinstance(self.parent, ChemicalObjects.Complex):
                self.parent.recreateAtomList()
            universe = self.universe()
            if universe is not None:
                universe._changed(True)
    
        # add sulfur bridges between cysteine residues
        def _addSSBridges(self, bonds):
            for b in bonds:
                cys1 = b[0]
                if cys1.symbol.lower() == 'cyx':
                    cys_ss1 = cys1
                else:
                    cys_ss1 = cys1._makeCystine()
                    self.replaceResidue(cys1, cys_ss1)
                cys2 = b[1]
                if cys2.symbol.lower() == 'cyx':
                    cys_ss2 = cys2
                else:
                    cys_ss2 = cys2._makeCystine()
                    self.replaceResidue(cys2, cys_ss2)
                self.bonds.append(Bonds.Bond((cys_ss1.sidechain.S_gamma,
                                              cys_ss2.sidechain.S_gamma)))
    
        def _descriptionSpec(self):
            kwargs = ','.join([name + '=' + `self.version_spec[name]`
                               for name in sorted(self.version_spec.keys())])
    	return "S", kwargs
    
        def _typeName(self):
            return ''.join(self.sequence())
    
        def _graphics(self, conf, distance_fn, model, module, options):
            if model != 'backbone':
                return ChemicalObjects.Molecule._graphics(self, conf,
                                                          distance_fn, model,
                                                          module, options)
            color = options.get('color', 'black')
            material = module.EmissiveMaterial(color)
            objects = []
            for i in range(len(self.groups)-1):
                a1 = self.groups[i].peptide.C_alpha
                a2 = self.groups[i+1].peptide.C_alpha
                p1 = a1.position(conf)
                p2 = a2.position(conf)
                if p1 is not None and p2 is not None:
                    bond_vector = 0.5*distance_fn(a1, a2, conf)
                    cut = bond_vector != 0.5*(p2-p1)
                    if not cut:
                        objects.append(module.Line(p1, p2, material = material))
                    else:
                        objects.append(module.Line(p1, p1+bond_vector,
                                                   material = material))
                        objects.append(module.Line(p2, p2-bond_vector,
                                                   material = material))
            return objects
    
    #
    # Subchains are created by slicing chains or extracting a chain from
    # a group of connected chains.
    #
    class SubChain(PeptideChain):
    
        """
        A contiguous part of a peptide chain
    
        SubChain objects are the result of slicing operations on
        PeptideChain objects. They cannot be created directly.
        SubChain objects permit all operations of PeptideChain
        objects, but cannot be added to a universe.
        """
    
        def __init__(self, chain=None, groups=None, name = ''):
            if chain is not None:
                self.groups = groups
                self.atoms = []
                self.bonds = []
                for g in self.groups:
                    self.atoms.extend(g.atoms)
                    self.bonds.extend(g.bonds)
                for i in range(len(self.groups)-1):
                    link1 = self.groups[i].chain_links[1]
                    link2 = self.groups[i+1].chain_links[0]
                    self.bonds.append(Bonds.Bond((link1, link2)))
                self.bonds = Bonds.BondList(self.bonds)
                self.name = name
                self.model = chain.model
                self.parent = chain.parent
                self.type = None
                self.configurations = {}
                self.part_of = chain
    
        is_incomplete = True
    
        def __repr__(self):
            if self.name == '':
                return 'SubChain of ' + repr(self.part_of)
            else:
                return ChemicalObjects.Molecule.__repr__(self)
        __str__ = __repr__
    
        def replaceResidue(self, r_old, r_new):
            for a in r_old.atoms:
                self.atoms.remove(a)
            obsolete_bonds = []
            for b in self.bonds:
                if b.a1 in r_old.atoms or b.a2 in r_old.atoms:
                    obsolete_bonds.append(b)
            for b in obsolete_bonds:
                self.bonds.remove(b)
            n = self.groups.index(r_old)
            if n > 0:
                for b in self.bonds.bondsOf(r_old.peptide.N):
                    self.bonds.remove(b)
            if n < len(self.groups)-1:
                for b in self.bonds.bondsOf(r_old.peptide.C):
                    self.bonds.remove(b)
            PeptideChain.replaceResidue(self.part_of, r_old, r_new)
            self.groups[n] = r_new
            self.atoms.extend(r_new.atoms)
            self.bonds.extend(r_new.bonds)
            if n > 0:
                self.bonds.append(Bonds.Bond((self.groups[n-1].peptide.C,
                                              self.groups[n].peptide.N)))
            if n < len(self.groups)-1:
                self.bonds.append(Bonds.Bond((self.groups[n].peptide.C,
                                              self.groups[n+1].peptide.N)))
    
        def _distanceConstraintList(self):
            atoms = self.atomList()
            return [(a1, a2, d)
                    for a1, a2, d in self.part_of._distanceConstraintList()
                    if a1 in atoms and a2 in atoms]
    
        def addDistanceConstraint(self, atom1, atom2, distance):
            chain = self
            while True:
                try:
                    chain = chain.part_of
                except AttributeError:
                    break
            try:
                chain.distance_constraints.append((atom1, atom2, distance))
            except AttributeError:
                chain.distance_constraints = [(atom1, atom2, distance)]
    
        def removeDistanceConstraints(self, universe=None):
            raise NotImplementedError
    
    #
    # Connected chains are collections of peptide chains connected by s-s bridges.
    #
    class ConnectedChains(PeptideChain):
    
        """
        Peptide chains connected by disulfide bridges
        
        A group of peptide chains connected by disulfide bridges must be considered
        a single molecule due to the presence of chemical bonds. Such a molecule
        is represented by a ConnectedChains object. These objects are created
        automatically when a Protein object is assembled. They are normally
        not used directly by application programs. When a chain with disulfide
        bridges to other chains is extracted from a Protein object, the
        return value is a SubChain object that indirectly refers to a
        ConnectedChains object.
        """
    
        def __init__(self, chains=None):
            if chains is not None:
                self.chains = []
                self.groups = []
                self.atoms = []
                self.bonds = Bonds.BondList([])
                self.chain_names = []
                self.model = chains[0].model
                version_spec = chains[0].version_spec
                for c in chains:
                    if c.version_spec['model'] != version_spec['model']:
                        raise ValueError("mixing chains of different model: " +
                                          c.version_spec['model'] + "/" +
                                          version_spec['model'])
                    ng = len(self.groups)
                    self.chains.append((c.name, ng, ng+len(c.groups),
                                        c.version_spec))
                    self.groups.extend(c.groups)
                    self.atoms.extend(c.atoms)
                    self.bonds.extend(c.bonds)
                    try: name = c.name
                    except AttributeError: name = ''
                    self.chain_names.append(name)
                for g in self.groups:
                    g.parent = self
                self.name = ''
                self.parent = None
                self.type = None
                self.configurations = {}
        is_connected_chains = True
    
        def _finalize(self):
            for i in range(len(self.chains)):
                c = self.chains[i]
                sub_chain = SubChain(self, self.groups[c[1]:c[2]], c[0])
                sub_chain.version_spec = c[3]
                for g in sub_chain.groups:
                    g.parent = sub_chain
                self.chains[i] = sub_chain
    
        def __len__(self):
            return len(self.chains)
    
        def __getitem__(self, item):
            return self.chains[item]
    
        def __getslice__(self, first, last):
            raise TypeError("Can't slice connected chains")
    
        def _graphics(self, conf, distance_fn, model, module, options):
            if model != 'backbone':
                return ChemicalObjects.Molecule._graphics(self, conf,
                                                          distance_fn, model,
                                                          module, options)
            objects = []
            for chain in self:
                objects = objects + chain._graphics(conf, distance_fn,
                                                    model, module, options)
            return objects
    
    #
    # Proteins are complexes of peptide chains, connected peptide chains,
    # and possibly other things.
    #
    class Protein(ChemicalObjects.Complex):
    
        """
        Protein
    
        A Protein object is a special kind of :class:`~MMTK.ChemicalObjects.Complex`
        object which is made up of peptide chains and possibly ligands.
    
        If the atoms in the peptide chains that make up a protein have
        defined positions, sulfur bridges within chains and between
        chains will be constructed automatically during protein generation
        based on a distance criterion between cystein sidechains.
    
    
        Proteins act as sequences of chains. If p is a Protein object, then
    
        * len(p) yields the number of chains
        * p[i] yields chain number i
    
        """
    
        def __init__(self, *items, **properties):
            """
            :param items: either a sequence of peptide chain objects, or
                          a string, which is interpreted as the name of a
                          database definition for a protein.
                          If that definition does not exist, the string
                          is taken to be the name of a PDB file, from which
                          all peptide chains are constructed and
                          assembled into a protein.
            :keyword model: one of "all" (all-atom), "no_hydrogens" or "none"
                            (no hydrogens),"polar_hydrogens" or "polar"
                            (united-atom with only polar hydrogens),
                            "polar_charmm" (like "polar", but defining
                            polar hydrogens like in the CHARMM force field),
                            "polar_opls" (like "polar", but defining
                            polar hydrogens like in the latest OPLS force field),
                            "calpha" (only the |C_alpha| atom of each residue).
                            Default is "all".
            :type model: str
            :keyword position: the center-of-mass position of the protein
            :type position: Scientific.Geometry.Vector
            :keyword name: a name for the protein
            :type name: str
            """
            if items == (None,):
                return
            self.name = ''
            if len(items) == 1 and type(items[0]) == type(''):
                try:
                    filename = Database.databasePath(items[0], 'Proteins')
                    found = 1
                except IOError:
                    found = 0
                if found:
                    blueprint = Database.BlueprintProtein(items[0])
                    items = blueprint.chains
                    for attr, value in vars(blueprint).items():
                        if attr not in ['type', 'chains']:
                            setattr(self, attr, value)
                else:
                    import PDB
                    conf = PDB.PDBConfiguration(items[0])
                    model = properties.get('model', 'all')
                    items = conf.createPeptideChains(model)
            molecules = []
            for i in items:
                if ChemicalObjects.isChemicalObject(i):
                    molecules.append(i)
                else:
                    molecules = molecules + list(i)
            for m, i in zip(molecules, range(len(molecules))):
                m._numbers = [i]
                if not m.name:
                    m.name = 'chain'+`i`
            ss = self._findSSBridges(molecules)
            new_mol = {}
            for m in molecules:
                new_mol[m] = ([m],[])
            for bond in ss:
                m1 = new_mol[bond[0].topLevelChemicalObject()]
                m2 = new_mol[bond[1].topLevelChemicalObject()]
                if m1 == m2:
                    m1[1].append(bond)
                else:
                    combined = (m1[0] + m2[0], m1[1] + m2[1] + [bond])
                    for m in combined[0]:
                        new_mol[m] = combined
            self.molecules = []
            while new_mol:
                m = new_mol.values()[0]
                for i in m[0]:
                    del new_mol[i]
                bonds = m[1]
                if len(m[0]) == 1:
                    m = m[0][0]
                    m._addSSBridges(bonds)
                else:
                    numbers = sum((i._numbers for i in m[0]), [])
                    m = ConnectedChains(m[0])
                    m._numbers = numbers
                    m._addSSBridges(bonds)
                    m._finalize()
                    for c in m:
                        c.parent = self
                m.parent = self
                self.molecules.append(m)
    
            self.atoms = []
            self.chains = []
            for m in self.molecules:
                self.atoms.extend(m.atoms)
                if hasattr(m, 'is_connected_chains'):
                    for c, name, i in zip(range(len(m)),
                                       m.chain_names, m._numbers):
                        self.chains.append((m, c, name, i))
                else:
                    try: name = m.name
                    except AttributeError: name = ''
                    self.chains.append((m, None, name, m._numbers[0]))
            self.chains.sort(lambda c1, c2: cmp(c1[3], c2[3]))
            self.chains = map(lambda c: c[:3], self.chains)
    
            self.parent = None
            self.type = None
            self.configurations = {}
            try:
                self.name = properties['name']
                del properties['name']
            except KeyError: pass
            if properties.has_key('position'):
                self.translateTo(properties['position'])
                del properties['position']
            self.addProperties(properties)
    
            undefined = 0
            for a in self.atoms:
                if a.position() is None:
                    undefined += 1
            if undefined > 0 and undefined != len(self.atoms):
                Utility.warning('Some atoms in a protein ' +
                                'have undefined positions.')
    
        is_protein = True
    
        def __len__(self):
            return len(self.chains)
    
        def __getitem__(self, item):
            if isinstance(item, int):
                m, c, name = self.chains[item]
            else:
                for m, c, name in self.chains:
                    if name == item:
                        break
                if name != item:
                    raise ValueError('No chain with name ' + item)
            if c is None:
                return m
            else:
                return m[c]
    
        def residuesOfType(self, *types):
            """
            :param types: a sequence of residue codes (one- or three-letter)
            :type types: sequence of str
            :returns: all residues whose type (one- or three-letter code)
                      is contained in types
            :rtype: :class:`~MMTK.Collections.Collection`
            """
            rlist = Collections.Collection([])
            for m in self.molecules:
                if isPeptideChain(m):
                    rlist = rlist + apply(m.residuesOfType, types)
            return rlist
    
        def backbone(self):
            """
            :returns: the peptide groups of all residues in all chains
            :rtype: :class:`~MMTK.Collections.Collection`
            """
            rlist = Collections.Collection([])
            for m in self.molecules:
                if isPeptideChain(m):
                    rlist = rlist + m.backbone()
            return rlist
    
        def sidechains(self):
            """
            :returns: the sidechain groups of all residues in all chains
            :rtype: :class:`~MMTK.Collections.Collection`
            """
            rlist = Collections.Collection([])
            for m in self.molecules:
                if isPeptideChain(m):
                    rlist = rlist + m.sidechains()
            return rlist
    
        def residues(self):
            """
            :returns: all residues in all chains
            :rtype: :class:`~MMTK.Collections.Collection`
            """
            rlist = Collections.Collection([])
            for m in self.molecules:
                if isPeptideChain(m):
                    rlist = rlist + m.residues()
            return rlist
    
        def phiPsi(self, conf = None):
            """
            :returns: a list of the (phi, psi) backbone angles for all residue
                      in all chains
            :rtype: list of list of tuple of float
            """
            return [chain.phiPsi(conf) for chain in self]
    
        _ss_bond_max = 0.25*Units.nm
    
        def _findSSBridges(self, molecules):
            molecules = filter(lambda m: hasattr(m, 'is_peptide_chain'), molecules)
            cys = Collections.Collection([])
            for m in molecules:
                if m.version_spec['model'] != 'calpha':
                    cys = cys + m.residuesOfType('cys') + m.residuesOfType('cyx')
            s = cys.map(lambda r: r.sidechain.S_gamma)
            ns = len(s)
            ss = []
            for i in xrange(ns-1):
                for j in xrange(i+1,ns):
                    r1 = s[i].position()
                    r2 = s[j].position()
                    if r1 and r2 and (r1-r2).length() < self._ss_bond_max:
                        ss.append((cys[i], cys[j]))
            return ss
    
        def _subunits(self):
            return list(self)
    
        def _description(self, tag, index_map, toplevel):
            if not toplevel:
                raise ValueError
            return 'l(' + `self.__class__.__name__` + ',' + `self.name` + ',[' + \
                   ','.join(o._description(tag, index_map, True) for o in self) + \
                   '])'
    
        def _graphics(self, conf, distance_fn, model, module, options):
            if model != 'backbone':
                return ChemicalObjects.Complex._graphics(self, conf, distance_fn,
                                                         model, module, options)
            objects = []
            for chain in self:
                objects.extend(chain._graphics(conf, distance_fn,
                                               model, module, options))
            return objects
    
    #
    # Type check functions
    #
    def isPeptideChain(x):
        """
        :param x: any object
        :returns: True if x is a peptide chain
        :rtype: bool
        """
        return hasattr(x, 'is_peptide_chain')
    
    def isProtein(x):
        """
        :param x: any object
        :returns: True if x is a protein
        :rtype: bool
        """
        return hasattr(x, 'is_protein')