Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Tobias WEBER
in20tools_old
Commits
7542891e
Commit
7542891e
authored
Mar 05, 2019
by
Tobias WEBER
Browse files
continued with lecture (crystal coords)
parent
33652a66
Changes
5
Expand all
Hide whitespace changes
Inline
Side-by-side
.gitignore
View file @
7542891e
...
...
@@ -64,3 +64,4 @@ stack.hh
*.aux
*.pdf
*.synctex.*
*.toc
doc/
formulas
/cell.svg
→
doc/
lecture
/cell.svg
View file @
7542891e
File moved
doc/
formulas/formulas
.tex
→
doc/
lecture/lecture
.tex
View file @
7542891e
%
%
collec
tion of
useful formulas
%
prepara
tion of
the TAS lecture
% @author Tobias Weber <tweber@ill.fr>
% @date 13-jul-2018
% @license see 'LICENSE' file
%
\documentclass
{
article
}
\documentclass
[english]
{
book
}
\usepackage
{
amsmath
}
\usepackage
{
tensor
}
\usepackage
{
bm
}
\usepackage
{
graphicx
}
\usepackage
{
siunitx
}
\usepackage
{
babel
}
\usepackage
[a4paper]
{
geometry
}
\geometry
{
tmargin=2.5cm, bmargin=2.5cm, lmargin=2cm, rmargin=2cm
}
\begin{document}
Useful formulas and derivations, T. Weber, tweber@ill.fr, July 13, 2018.
\title
{
Notes on Triple Axis Spectroscopy
}
\author
{
T. Weber, tweber@ill.fr
}
\maketitle
\tableofcontents
% ------------------------------------------------------------------------------------------------------------------------------------
% ====================================================================================================================================
\chapter
{
Crystal Coordinates and TAS Angles
}
% ------------------------------------------------------------------------------------------------------------------------------------
\section
{
Fractional Coordinates
}
\begin{center}
...
...
@@ -57,9 +66,9 @@ Inserting $\left| a \right>$ and $\left| b \right>$ into Eq. \ref{ab} gives:
Using the cross product between
$
\left
| a
\right
>
$
and
$
\left
| b
\right
>
$
, we get:
\begin{equation}
\left\Vert
\left
| a
\right
>
\times
\left
| b
\right
>
\right\Vert
=
\left\Vert
\left
(
\begin{array}
{
c
}
0
\\
0
\\
a
_
1 b
_
2
\end{array}
\right
)
\right\Vert
=
ab
\sin
\gamma
,
\label
{
crossab
}
\begin{equation}
\left\Vert
\left
| a
\right
>
\times
\left
| b
\right
>
\right\Vert
=
\left\Vert
\left
(
\begin{array}
{
c
}
0
\\
0
\\
a
_
1 b
_
2
\end{array}
\right
)
\right\Vert
=
ab
\sin
\gamma
,
\label
{
crossab
}
\end{equation}
\begin{equation}
b
_
2 = b
\sin
\gamma
,
\end{equation}
\begin{equation}
\boxed
{
\left
| b
\right
> =
\left
(
\begin{array}
{
c
}
b
\cos
\gamma
\\
b
\sin
\gamma
\\
0
\end{array}
\right
).
}
\label
{
bvec
}
\end{equation}
...
...
@@ -84,10 +93,10 @@ The last component, $c_3$, can be obtained from the vector length normalisation,
\begin{equation}
\left
< c | c
\right
> = c
_
1
^
2 + c
_
2
^
2 + c
_
3
^
2 = c
^
2,
\end{equation}
\begin{equation}
c
_
3
^
2 = c
^
2 - c
_
1
^
2 - c
_
2
^
2,
\end{equation}
\begin{equation}
c
_
3
^
2 = c
^
2
\left
[1 - \cos^2 \beta - \left(\frac{\cos \alpha - \cos \gamma \cos \beta}{\sin \gamma} \right)^2 \right]
,
\end{equation}
\begin{equation}
\boxed
{
\left
| c
\right
> =
\left
(
\begin{array}
{
c
}
c
\cdot
\cos
\beta
\\
c
\cdot
\frac
{
\cos
\alpha
-
\cos
\gamma
\cos
\beta
}{
\sin
\gamma
}
\\
c
\cdot
\sqrt
{
1 -
\cos
^
2
\beta
-
\left
(
\frac
{
\cos
\alpha
-
\cos
\gamma
\cos
\beta
}{
\sin
\gamma
}
\right
)
^
2
}
\begin{equation}
\boxed
{
\left
| c
\right
> =
\left
(
\begin{array}
{
c
}
c
\cdot
\cos
\beta
\\
c
\cdot
\frac
{
\cos
\alpha
-
\cos
\gamma
\cos
\beta
}{
\sin
\gamma
}
\\
c
\cdot
\sqrt
{
1 -
\cos
^
2
\beta
-
\left
(
\frac
{
\cos
\alpha
-
\cos
\gamma
\cos
\beta
}{
\sin
\gamma
}
\right
)
^
2
}
\end{array}
\right
).
}
\label
{
avec
}
\end{equation}
...
...
@@ -100,26 +109,54 @@ The crystallographic $A$ matrix, which transforms real-space fractional to lab c
\end{array}
\right
).
\end{equation}
The
$
B
$
matrix, which transforms reciprocal-space relative lattice units (rlu) to lab coordinates (1/A), is:
The
$
B
$
matrix, which transforms reciprocal-space relative lattice units (rlu) to lab coordinates (1/
\A
A
), is:
\begin{equation}
B = 2
\pi
A
^{
-t
}
,
\end{equation}
where
$
-
t
$
denotes the transposed inverse.
The metric tensor corresponding to the coordinate system defined by the
$
B
$
matrix is:
\begin{equation}
\left
(g
_{
ij
}
\right
) =
\left
<
\bm
{
b
_
i
}
|
\bm
{
b
_
j
}
\right
> = B
^
T B,
\end{equation}
where the reciprocal basis vectors
$
\left
|
\bm
{
b
_
i
}
\right
>
$
form the columns of
$
B
$
.
\subsection*
{
Example: Lengths and Angles in the Reciprocal Lattice
}
Having a metric makes it straightforward to calculate lengths and angles.
The length of a reciprocal lattice vector
$
\left
| G
\right
>
$
seen from the lab system is (in 1/
\AA
{}
units):
\begin{equation}
\left\Vert
\left
< G | G
\right
>
\right\Vert
=
\sqrt
{
\left
< G | G
\right
>
}
=
\sqrt
{
G
_
i G
^
j
}
=
\sqrt
{
g
_{
ij
}
G
^
i G
^
j
}
.
\end{equation}
The angle
$
\theta
$
between two Bragg peaks
$
\left
| G
\right
>
$
and
$
\left
| H
\right
>
$
is given by their dot product:
\begin{equation}
\frac
{
\left
< G | H
\right
>
}{
\left\Vert
\left
< G | G
\right
>
\right\Vert
\cdot
\left\Vert
\left
< H | H
\right
>
\right\Vert
}
=
\cos
\theta
,
\end{equation}
%\begin{equation}
% \frac{G_i H^j }{\left\Vert \left< G | G \right> \right\Vert \cdot \left\Vert \left< H | H \right> \right\Vert} = \cos \theta,
%\end{equation}
\begin{equation}
\frac
{
g
_{
ij
}
G
^
i H
^
j
}{
\sqrt
{
g
_{
ij
}
G
^
i G
^
j
}
\sqrt
{
g
_{
ij
}
H
^
i H
^
j
}}
=
\cos
\theta
.
\end{equation}
% ------------------------------------------------------------------------------------------------------------------------------------
% ------------------------------------------------------------------------------------------------------------------------------------
\section
{
TAS Angles and Scattering Triangle
}
\begin{figure}
\begin{center}
\includegraphics
[width = 0.2 \textwidth]
{
triangle
}
\includegraphics
[width = 0.5 \textwidth]
{
tas
}
\hspace
{
1.5cm
}
\includegraphics
[trim=0 -2cm 0 0, width=0.25\textwidth]
{
triangle
}
\end{center}
\caption
{
Triple-axis layout and scattering triangle.
}
\end{figure}
\subsection*
{
Monochromator Angles
$
a
_
1
$
,
$
a
_
2
$
and Analyser Angles
$
a
_
5
$
,
$
a
_
6
$}
The monochromator (and analyser) angles follow directly from Bragg's equation:
\begin{equation}
2 k
_{
i,f
}
\sin
a
_{
1,5
}
= 2
\pi
/ d
_{
m,a
}
,
\end{equation}
\begin{equation}
\boxed
{
a
_{
1,5
}
=
\arcsin
\left
(
\frac
{
\pi
}{
d
_{
m,a
}
\cdot
k
_{
i,f
}}
\right
).
}
\end{equation}
\begin{equation}
2 d
_{
m,a
}
\sin
a
_{
1,5
}
= n
\lambda
_{
i,f
}
,
\end{equation}
\begin{equation}
2 k
_{
i,f
}
\sin
a
_{
1,5
}
= 2
\pi
n / d
_{
m,a
}
,
\end{equation}
\begin{equation}
\boxed
{
a
_{
1,5
}
=
\arcsin
\left
(
\frac
{
\pi
n
}{
d
_{
m,a
}
\cdot
k
_{
i,f
}}
\right
).
}
\end{equation}
Fulfilling the Bragg condition, the angles
$
a
_
2
$
and
$
a
_
6
$
are simply:
$
a
_{
2
,
6
}
=
2
\cdot
a
_{
1
,
5
}
.
$
...
...
@@ -161,5 +198,27 @@ The sign, $\sigma_{\mathrm{side}}$, of $\xi$ depends on which side of the orient
\paragraph*
{
Special case
}
Special case for cubic crystals,
$
g
_{
ij
}
=
\delta
_{
ij
}
\cdot
\left
(
2
\pi
/
a
\right
)
^
2
$
:
\begin{equation}
\xi
=
\sigma
_{
\mathrm
{
side
}}
\cdot
\arccos
\left
(
\frac
{
Q
_
i a
^
i
}{
\sqrt
{
Q
_
i Q
^
i
}
\sqrt
{
a
_
i a
^
i
}
}
\right
)
\end{equation}
% ------------------------------------------------------------------------------------------------------------------------------------
% ====================================================================================================================================
% ====================================================================================================================================
\chapter
{
Neutron Scattering Cross-Sections
}
% ====================================================================================================================================
% ====================================================================================================================================
\chapter
{
Triple-Axis Resolution Ellipsoid
}
% ====================================================================================================================================
\end{document}
doc/lecture/tas.svg
0 → 100644
View file @
7542891e
This diff is collapsed.
Click to expand it.
doc/
formulas
/triangle.svg
→
doc/
lecture
/triangle.svg
View file @
7542891e
File moved
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment