@@ -51,7 +53,8 @@ Angle $\psi$ between $\left| k_i \right>$ and $\left| Q \right>$, in units of \A
\subsubsection*{Angle $\xi$}
Angle $\xi$ between $\left| Q \right>$ and orientation vector $\left| a \right>$ (i.e. $ax$, $ay$, $az$), in units of rlu; $g_{ij}=\left| b_i \left> \right< b_j \right|$ is the covariant metric of the reciprocal lattice with basis $\left| b_i \right>$:
Angle $\xi$ between $\left| Q \right>$ and orientation vector $\left| a \right>$ (i.e. $ax$, $ay$, $az$), in units of rlu; $g_{ij}=\left< \bm{b}_i | \bm{b}_j \right>$ is the covariant metric of the reciprocal lattice with basis vectors $\left| \bm{b}_i \right>$, which form the columns of the crystallographic $B$ matrix:
\begin{equation}\xi = \sigma_{\mathrm{side}}\cdot\arccos\left( \frac{\left< Q | a \right> }{\sqrt{\left< Q | Q \right>}\sqrt{\left< a | a \right>}}\right) \end{equation}