Verified Commit a4fcc9fb authored by Tobias WEBER's avatar Tobias WEBER
Browse files

added links

parent 5d918756
References for formulas and algorithms, which are employed in this software.
============================================================================
-------------------------------------------------------------------------------
Neutrons
-------------------------------------------------------------------------------
* (Shirane 2002), G. Shirane et al., "Neutron Scattering with a Triple-Axis Spectrometer", 2002, ISBN: 978-0521411264.
* (Squires 2012), G. L. Squires, "Thermal Neutron Scattering", 2012, ISBN: 9781139107808.
* (ILL Neutron Data Booklet), ISBN: 0-9704143-7-4, 2003, https://www.ill.eu/about-the-ill/documentation/
-------------------------------------------------------------------------------
General Mathematics
-------------------------------------------------------------------------------
* (Stoecker 1999), H. Stoecker et al., "Taschenbuch mathematischer Formeln", 1999, ISBN: 3-8171-1573-3.
* (Kuipers 2002), J. B. Kuipers, "Quaternions and Rotation Sequences", 2002, ISBN: 0-691-10298-8.
* (Merziger 2006), G. Merziger and T. Wirth, "Repetitorium der hoeheren Mathematik", 2006, ISBN: 3923923333.
* (Bronstein 2008), I. N. Bronstein et al., "Taschenbuch der Mathematik", 2008, ISBN: 978-3-8171-2017-8.
* (Scherer 2010), P. O. J. Scherer, "Computational Physics", 2010, ISBN: 978-3-642-13989-5.
* (Scarpino 2011), M. Scarpino, "OpenCL in Action", 2011, ISBN: 9781617290176.
* (Arfken 2013), G. B. Arfken, "Mathematical Methods for Physicists", 2013, ISBN: 978-0-12-384654-9.
* (Arens 2015), T. Arens et al., "Mathematik", 2015, ISBN: 978-3-642-44919-2
-------------------------------------------------------------------------------
General Physics
-------------------------------------------------------------------------------
* (Schroeder 2000), D. V. Schroeder, "Thermal Physics", 2000, ISBN: 0-321-27779-1.
* (Khomskii 2014), D. I. Khomskii, "Transition Metal Compounds", 2014, ISBN: 978-1-107-02017-7
...@@ -5,6 +5,8 @@ ...@@ -5,6 +5,8 @@
# @date 30-mar-2019 # @date 30-mar-2019
# @license GPLv3, see 'LICENSE' file # @license GPLv3, see 'LICENSE' file
# #
# for a good explanation of the covariance matrix method, see, e.g., (Arens 2015), p. 795.
#
import os import os
import tas import tas
......
...@@ -32,12 +32,14 @@ def rotate(_axis, vec, phi): ...@@ -32,12 +32,14 @@ def rotate(_axis, vec, phi):
# get metric from crystal B matrix # get metric from crystal B matrix
# basis vectors are in the columns of B, i.e. the second index # basis vectors are in the columns of B, i.e. the second index
# see (Arens 2015), p. 815
def get_metric(B): def get_metric(B):
#return np.einsum("ij,ik -> jk", B, B) #return np.einsum("ij,ik -> jk", B, B)
return np.dot(np.transpose(B), B) return np.dot(np.transpose(B), B)
# cross product in fractional coordinates # cross product in fractional coordinates
# see: (Arens 2015), p. 815
def cross(a, b, B): def cross(a, b, B):
# levi-civita in fractional coordinates # levi-civita in fractional coordinates
def levi(i,j,k, B): def levi(i,j,k, B):
...@@ -50,11 +52,13 @@ def cross(a, b, B): ...@@ -50,11 +52,13 @@ def cross(a, b, B):
# dot product in fractional coordinates # dot product in fractional coordinates
# see: (Arens 2015), p. 808
def dot(a, b, metric): def dot(a, b, metric):
return np.dot(a, np.dot(metric, b)) return np.dot(a, np.dot(metric, b))
# angle between peaks in fractional coordinates # angle between peaks in fractional coordinates
# see (Arens 2015), p. 808
def angle(a, b, metric): def angle(a, b, metric):
len_a = np.sqrt(dot(a, a, metric)) len_a = np.sqrt(dot(a, a, metric))
len_b = np.sqrt(dot(b, b, metric)) len_b = np.sqrt(dot(b, b, metric))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment