Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Scientific Software
Takin
mag-core
Commits
a4fcc9fb
Verified
Commit
a4fcc9fb
authored
Feb 01, 2021
by
Tobias WEBER
Browse files
added links
parent
5d918756
Changes
3
Hide whitespace changes
Inline
Side-by-side
LITERATURE
0 → 100644
View file @
a4fcc9fb
References for formulas and algorithms, which are employed in this software.
============================================================================
-------------------------------------------------------------------------------
Neutrons
-------------------------------------------------------------------------------
* (Shirane 2002), G. Shirane et al., "Neutron Scattering with a Triple-Axis Spectrometer", 2002, ISBN: 978-0521411264.
* (Squires 2012), G. L. Squires, "Thermal Neutron Scattering", 2012, ISBN: 9781139107808.
* (ILL Neutron Data Booklet), ISBN: 0-9704143-7-4, 2003, https://www.ill.eu/about-the-ill/documentation/
-------------------------------------------------------------------------------
General Mathematics
-------------------------------------------------------------------------------
* (Stoecker 1999), H. Stoecker et al., "Taschenbuch mathematischer Formeln", 1999, ISBN: 3-8171-1573-3.
* (Kuipers 2002), J. B. Kuipers, "Quaternions and Rotation Sequences", 2002, ISBN: 0-691-10298-8.
* (Merziger 2006), G. Merziger and T. Wirth, "Repetitorium der hoeheren Mathematik", 2006, ISBN: 3923923333.
* (Bronstein 2008), I. N. Bronstein et al., "Taschenbuch der Mathematik", 2008, ISBN: 978-3-8171-2017-8.
* (Scherer 2010), P. O. J. Scherer, "Computational Physics", 2010, ISBN: 978-3-642-13989-5.
* (Scarpino 2011), M. Scarpino, "OpenCL in Action", 2011, ISBN: 9781617290176.
* (Arfken 2013), G. B. Arfken, "Mathematical Methods for Physicists", 2013, ISBN: 978-0-12-384654-9.
* (Arens 2015), T. Arens et al., "Mathematik", 2015, ISBN: 978-3-642-44919-2
-------------------------------------------------------------------------------
General Physics
-------------------------------------------------------------------------------
* (Schroeder 2000), D. V. Schroeder, "Thermal Physics", 2000, ISBN: 0-321-27779-1.
* (Khomskii 2014), D. I. Khomskii, "Transition Metal Compounds", 2014, ISBN: 978-1-107-02017-7
tools/tascalc/cov.py
View file @
a4fcc9fb
...
@@ -5,6 +5,8 @@
...
@@ -5,6 +5,8 @@
# @date 30-mar-2019
# @date 30-mar-2019
# @license GPLv3, see 'LICENSE' file
# @license GPLv3, see 'LICENSE' file
#
#
# for a good explanation of the covariance matrix method, see, e.g., (Arens 2015), p. 795.
#
import
os
import
os
import
tas
import
tas
...
...
tools/tascalc/tas.py
View file @
a4fcc9fb
...
@@ -32,12 +32,14 @@ def rotate(_axis, vec, phi):
...
@@ -32,12 +32,14 @@ def rotate(_axis, vec, phi):
# get metric from crystal B matrix
# get metric from crystal B matrix
# basis vectors are in the columns of B, i.e. the second index
# basis vectors are in the columns of B, i.e. the second index
# see (Arens 2015), p. 815
def
get_metric
(
B
):
def
get_metric
(
B
):
#return np.einsum("ij,ik -> jk", B, B)
#return np.einsum("ij,ik -> jk", B, B)
return
np
.
dot
(
np
.
transpose
(
B
),
B
)
return
np
.
dot
(
np
.
transpose
(
B
),
B
)
# cross product in fractional coordinates
# cross product in fractional coordinates
# see: (Arens 2015), p. 815
def
cross
(
a
,
b
,
B
):
def
cross
(
a
,
b
,
B
):
# levi-civita in fractional coordinates
# levi-civita in fractional coordinates
def
levi
(
i
,
j
,
k
,
B
):
def
levi
(
i
,
j
,
k
,
B
):
...
@@ -50,11 +52,13 @@ def cross(a, b, B):
...
@@ -50,11 +52,13 @@ def cross(a, b, B):
# dot product in fractional coordinates
# dot product in fractional coordinates
# see: (Arens 2015), p. 808
def
dot
(
a
,
b
,
metric
):
def
dot
(
a
,
b
,
metric
):
return
np
.
dot
(
a
,
np
.
dot
(
metric
,
b
))
return
np
.
dot
(
a
,
np
.
dot
(
metric
,
b
))
# angle between peaks in fractional coordinates
# angle between peaks in fractional coordinates
# see (Arens 2015), p. 808
def
angle
(
a
,
b
,
metric
):
def
angle
(
a
,
b
,
metric
):
len_a
=
np
.
sqrt
(
dot
(
a
,
a
,
metric
))
len_a
=
np
.
sqrt
(
dot
(
a
,
a
,
metric
))
len_b
=
np
.
sqrt
(
dot
(
b
,
b
,
metric
))
len_b
=
np
.
sqrt
(
dot
(
b
,
b
,
metric
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment