Commit 96eff5c6 authored by Tobias WEBER's avatar Tobias WEBER
Browse files

forgot square

parent 5235c196
......@@ -48,7 +48,8 @@ Angle $\psi$ between $\left| k_i \right>$ and $\left| Q \right>$, in units of \A
Angle $\xi$ between $\left| Q \right>$ and orientation vector $\left| a \right>$ (i.e. $ax$, $ay$, $az$), in units of rlu; $g_{ij} = \left| b_i \left> \right< b_j \right|$ is the covariant metric of the reciprocal lattice with basis $\left| b_i \right>$:
\begin{equation} \xi = \arccos \left( \frac{ \left< Q | a \right> }{ \sqrt{\left< Q | Q \right>} \sqrt{\left< a | a \right>} } \right) \end{equation}
\begin{equation} \boxed{ \xi = \arccos \left( \frac{ Q^i g_{ij} a^j }{ \sqrt{Q^i g_{ij} Q^j} \sqrt{a^i g_{ij} a^j} } \right) } \end{equation}
Special case for cubic crystals, $g_{ij} = \delta_{ij} 2\pi / a$:
Special case for cubic crystals, $g_{ij} = \delta_{ij} \cdot \left( 2\pi / a \right)^2$:
\begin{equation} \xi = \arccos \left( \frac{ Q_i a^i }{ \sqrt{Q_i Q^i} \sqrt{a_i a^i} } \right) \end{equation}
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment