The code.ill.fr has been recreated and upgraded with the latest version this weekend, If you encounter any problem please inform the Helpdesk.

Verified Commit 89cad59b authored by Tobias WEBER's avatar Tobias WEBER
Browse files

removed formulas

parent 5d918756
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="721.80981mm"
height="815.75104mm"
viewBox="0 0 721.80982 815.75104"
version="1.1"
id="svg8"
sodipodi:docname="cell.svg"
inkscape:version="0.92.3 (2405546, 2018-03-11)">
<defs
id="defs2">
<marker
inkscape:stockid="Arrow2Mend"
orient="auto"
refY="0"
refX="0"
id="marker1477"
style="overflow:visible"
inkscape:isstock="true">
<path
id="path1475"
style="fill:#0000ff;fill-opacity:1;fill-rule:evenodd;stroke:#0000ff;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
transform="scale(-0.6)"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:isstock="true"
style="overflow:visible"
id="marker1327"
refX="0"
refY="0"
orient="auto"
inkscape:stockid="Arrow2Mend"
inkscape:collect="always">
<path
transform="scale(-0.6)"
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
style="fill:#00ff00;fill-opacity:1;fill-rule:evenodd;stroke:#00ff00;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
id="path1325"
inkscape:connector-curvature="0" />
</marker>
<marker
inkscape:stockid="Arrow2Mend"
orient="auto"
refY="0"
refX="0"
id="Arrow2Mend"
style="overflow:visible"
inkscape:isstock="true"
inkscape:collect="always">
<path
id="path1006"
style="fill:#fd0000;fill-opacity:1;fill-rule:evenodd;stroke:#ff0000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
transform="scale(-0.6)"
inkscape:connector-curvature="0" />
</marker>
<inkscape:perspective
sodipodi:type="inkscape:persp3d"
inkscape:vp_x="91.756739 : 520.37834 : 0"
inkscape:vp_y="766.04444 : 642.7876 : 0"
inkscape:vp_z="402.9948 : -252.79817 : 0"
inkscape:persp3d-origin="-13.309906 : 509.53176 : 1"
id="perspective815" />
</defs>
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="0.22627417"
inkscape:cx="1597.849"
inkscape:cy="1552.2027"
inkscape:document-units="mm"
inkscape:current-layer="layer1"
showgrid="false"
fit-margin-top="0"
fit-margin-left="0"
fit-margin-right="0"
fit-margin-bottom="0"
inkscape:window-width="1616"
inkscape:window-height="1122"
inkscape:window-x="0"
inkscape:window-y="25"
inkscape:window-maximized="1" />
<metadata
id="metadata5">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
<dc:creator>
<cc:Agent>
<dc:title>tweber</dc:title>
</cc:Agent>
</dc:creator>
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Layer 1"
inkscape:groupmode="layer"
id="layer1"
transform="translate(-118.30991,108.21926)">
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:10.58333302px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
x="452.84079"
y="345.07593"
id="text1824"><tspan
sodipodi:role="line"
id="tspan1822"
x="452.84079"
y="345.07593"
style="font-size:88.19444275px;fill:#0000ff;fill-opacity:1;stroke-width:0.26458332">γ</tspan></text>
<g
sodipodi:type="inkscape:box3d"
id="g847"
style="opacity:1;stroke:#000000;stroke-width:4;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;fill:none"
inkscape:perspectiveID="#perspective815"
inkscape:corner0="-0.12295849 : 0.55734914 : 0 : 1"
inkscape:corner7="-0.73884464 : 0.11836195 : 0.78772176 : 1">
<path
sodipodi:type="inkscape:box3dside"
id="path851"
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:4;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
inkscape:box3dsidetype="5"
d="m 520.67194,-96.272161 -56.5117,320.493811 317.44777,199.13463 56.5117,-320.49382 z"
points="464.16024,224.22165 781.60801,423.35628 838.11971,102.86246 520.67194,-96.272161 " />
<path
sodipodi:type="inkscape:box3dside"
id="path849"
style="fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:4;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
inkscape:box3dsidetype="6"
d="M 520.67194,-96.272161 184.38825,185.90336 501.83602,385.03798 838.11971,102.86246 Z"
points="184.38825,185.90336 501.83602,385.03798 838.11971,102.86246 520.67194,-96.272161 " />
<path
sodipodi:type="inkscape:box3dside"
id="path859"
style="fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:4;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
inkscape:box3dsidetype="11"
d="M 838.11971,102.86246 781.60801,423.35628 445.32431,705.5318 501.83602,385.03798 Z"
points="781.60801,423.35628 445.32431,705.5318 501.83602,385.03798 838.11971,102.86246 " />
<path
sodipodi:type="inkscape:box3dside"
id="path857"
style="fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:4;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
inkscape:box3dsidetype="13"
d="M 184.38825,185.90336 127.87654,506.39718 445.32431,705.5318 501.83602,385.03798 Z"
points="127.87654,506.39718 445.32431,705.5318 501.83602,385.03798 184.38825,185.90336 " />
<path
sodipodi:type="inkscape:box3dside"
id="path855"
style="fill:none;fill-opacity:0;fill-rule:evenodd;stroke:#000000;stroke-width:4;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
inkscape:box3dsidetype="14"
d="M 464.16024,224.22165 127.87654,506.39718 445.32431,705.5318 781.60801,423.35628 Z"
points="127.87654,506.39718 445.32431,705.5318 781.60801,423.35628 464.16024,224.22165 " />
<path
sodipodi:type="inkscape:box3dside"
id="path853"
style="fill:none;fill-opacity:0;fill-rule:evenodd;stroke:#000000;stroke-width:4;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
inkscape:box3dsidetype="3"
d="M 520.67194,-96.272161 464.16024,224.22165 127.87654,506.39718 184.38825,185.90336 Z"
points="464.16024,224.22165 127.87654,506.39718 184.38825,185.90336 520.67194,-96.272161 " />
</g>
<path
style="fill:#fd0000;fill-opacity:1;stroke:#ff0000;stroke-width:8;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow2Mend)"
d="M 464.16024,224.22166 127.87655,506.39718"
id="path977"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:#00ff00;fill-opacity:1;stroke:#00ff00;stroke-width:8;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1327)"
d="M 464.16024,224.22166 781.60801,423.35628"
id="path1317"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:#0000ff;fill-opacity:1;stroke:#0000ff;stroke-width:8;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1477)"
d="m 464.16024,224.22166 56.5117,-320.493821"
id="path1467"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:70.55555725px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
x="191.95467"
y="526.20624"
id="text1773"><tspan
sodipodi:role="line"
id="tspan1771"
x="191.95467"
y="526.20624"
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:88.19444275px;line-height:0;font-family:sans-serif;-inkscape-font-specification:'sans-serif Bold';fill:#ff0000;fill-opacity:1;stroke-width:0.26458332">a</tspan><tspan
sodipodi:role="line"
x="191.95467"
y="614.4007"
style="font-size:70.55555725px;line-height:0;stroke-width:0.26458332"
id="tspan1775" /></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:10.58333302px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:#00ff00;stroke-width:0.26458332;stroke-opacity:1"
x="657.23114"
y="461.84583"
id="text1779"><tspan
sodipodi:role="line"
id="tspan1777"
x="657.23114"
y="461.84583"
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:88.19444275px;font-family:sans-serif;-inkscape-font-specification:'sans-serif Bold';fill:#00ff00;fill-opacity:1;stroke:#00ff00;stroke-width:0.26458332;stroke-opacity:1">b</tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:10.58333302px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
x="434.50757"
y="28.126436"
id="text1783"><tspan
sodipodi:role="line"
id="tspan1781"
x="434.50757"
y="28.126436"
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:88.19444275px;font-family:sans-serif;-inkscape-font-specification:'sans-serif Bold';fill:#0000ff;fill-opacity:1;stroke-width:0.26458332">c</tspan></text>
<path
style="fill:none;fill-opacity:1;stroke:#00fc00;stroke-width:8;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
d="m 464.42394,172.99425 c -44.95783,21.94135 -57.04799,56.47032 -50.28007,98.22153"
id="path1808"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:none;stroke:#ff0000;stroke-width:8;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
d="m 464.42394,172.99425 c 33.36113,12.01871 57.26132,37.40794 48.5743,92.99043"
id="path1810"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:none;stroke:#0000fd;stroke-width:8;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
d="m 414.14387,271.21578 c 39.26641,19.30615 72.8116,19.54157 98.85436,-5.2311"
id="path1812"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:10.58333302px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
x="520.43964"
y="210.3869"
id="text1816"><tspan
sodipodi:role="line"
id="tspan1814"
x="520.43964"
y="210.3869"
style="font-size:88.19444275px;fill:#ff0000;fill-opacity:1;stroke-width:0.26458332">α</tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:10.58333302px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#00f700;fill-opacity:1;stroke:none;stroke-width:0.26458332;stroke-opacity:1"
x="357.49677"
y="209.07576"
id="text1820"><tspan
sodipodi:role="line"
id="tspan1818"
x="357.49677"
y="209.07576"
style="font-size:88.19444275px;fill:#00f700;fill-opacity:1;stroke:none;stroke-width:0.26458332;stroke-opacity:1">β</tspan></text>
</g>
</svg>
@book
{
Merzbacher1998,
author = {Merzbacher, E.},
title = {{Quantum Mechanics, Third Edition}},
year = {1998},
publisher = {John Wiley},
isbn = {0-471-88702-1},
}
@book
{
Shirane2002,
author = {Shirane, G. and Shapiro, S. M. and Tranquada, J. M.},
title = {{Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques}},
year = {2002},
publisher = {Cambridge University Press},
isbn = {978-0521411264},
}
@book
{
Squires2012,
author = {Squires, G. L.},
title = {{Introduction to the Theory of Thermal Neutron Scattering}},
year = {2012},
publisher = {Cambridge University Press},
isbn = {978-1-107-64406-9},
}
@article
{
Cooper1967,
author = "Cooper, M. J. and Nathans, R.",
title = {{The resolution function in neutron diffractometry. I. The resolution function of a neutron diffractometer and its application to phonon measurements}},
journal = "Acta Crystallographica",
volume = "23",
number = "3",
pages = "357--367",
year = "1967",
doi = {10.1107/S0365110X67002816},
}
@article
{
Popovici1975,
author = "Popovici, M.",
title = {{On the resolution of slow-neutron spectrometers. IV. The triple-axis spectrometer resolution function, spatial effects included}},
journal = "Acta Crystallographica Section A",
volume = "31",
number = "4",
pages = "507--513",
year = "1975",
doi = {10.1107/S0567739475001088},
}
@article
{
Eckold2014,
author = "G. Eckold and O. Sobolev",
title = {{Analytical approach to the 4D-resolution function of three axes neutron spectrometers with focussing monochromators and analysers}},
journal = "Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
volume = "752",
pages = "54--64",
year = "2014",
doi = {10.1016/j.nima.2014.03.019},
}
@article
{
Violini2014,
author = {N. Violini and J. Voigt and S. Pasini and T. Br\"uckel},
title = {{A method to compute the covariance matrix of wavevector-energy transfer for neutron time-of-flight spectrometers}},
journal = "Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
volume = "736",
pages = "31--39",
year = "2014",
doi = {10.1016/j.nima.2013.10.042},
}
@article
{
Lumsden2005,
author = "Lumsden, M. D. and Robertson, J. L. and Yethiraj, M.",
title = {{UB matrix implementation for inelastic neutron scattering experiments}},
journal = "Journal of Applied Crystallography",
volume = "38",
number = "3",
pages = "405--411",
year = "2005",
doi = {10.1107/S0021889805004875},
}
%
% useful formulas
% @author Tobias Weber <tweber@ill.fr>
% @date 13-jul-2018
% @license see 'LICENSE' file
%
\documentclass[english]{book}
\usepackage{amsmath}
\usepackage{tensor}
\usepackage{bm}
\usepackage{graphicx}
\usepackage{siunitx}
\usepackage{babel}
\usepackage[a4paper]{geometry}
\geometry{tmargin=2.5cm, bmargin=2.5cm, lmargin=2cm, rmargin=2cm}
\usepackage[colorlinks=true, linkcolor=black, citecolor=blue, urlcolor=blue, unicode=true]{hyperref}
\begin{document}
\title{Useful formulas}
\author{T. Weber, tweber@ill.fr}
\maketitle
%\tableofcontents
% ====================================================================================================================================
\chapter{Crystal Coordinates and TAS Angles}
% ------------------------------------------------------------------------------------------------------------------------------------
\section{Fractional Coordinates}
\begin{center}
\includegraphics[width = 0.2 \textwidth]{cell}
\end{center}
\subsection*{Basic Properties}
From the cosine theorem we get:
\begin{equation} \left< a | b \right > = ab \cos \gamma, \label{ab} \end{equation}
\begin{equation} \left< a | c \right > = ac \cos \beta, \label{ac} \end{equation}
\begin{equation} \left< b | c \right > = bc \cos \alpha. \label{bc} \end{equation}
\subsection*{Basis Vectors}
We first choose $\left| a \right>$ along $x$,
\begin{equation} \boxed{ \left| a \right> = \left( \begin{array}{c} a_1 = a \\ 0 \\ 0 \end{array} \right), } \label{avec} \end{equation}
$\left| b \right>$ in the $xy$ plane,
\begin{equation} \left| b \right> = \left( \begin{array}{c} b_1 \\ b_2 \\ 0 \end{array} \right), \end{equation}
and $\left| c \right>$ in general:
\begin{equation} \left| c \right> = \left( \begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right). \end{equation}
Inserting $\left| a \right>$ and $\left| b \right>$ into Eq. \ref{ab} gives:
\begin{equation} \left< a | b \right > = a_1 b_1 = ab \cos \gamma, \end{equation}
\begin{equation} b_1 = b \cos \gamma. \end{equation}
Using the cross product between $\left| a \right>$ and $\left| b \right>$, we get:
\begin{equation} \left\Vert \left| a \right> \times \left| b \right> \right\Vert =
\left\Vert \left( \begin{array}{c} 0 \\ 0 \\ a_1 b_2 \end{array} \right) \right\Vert =
ab \sin \gamma, \label{crossab}
\end{equation}
\begin{equation} b_2 = b \sin \gamma, \end{equation}
\begin{equation} \boxed{ \left| b \right> = \left( \begin{array}{c} b \cos \gamma \\ b \sin \gamma \\ 0 \end{array} \right). } \label{bvec} \end{equation}
Inserting $\left| a \right>$ and $\left| c \right>$ into Eq. \ref{ac} gives:
\begin{equation} \left< a | c \right > = a_1 c_1 = ac \cos \beta, \end{equation}
\begin{equation} c_1 = c \cos \beta. \end{equation}
Inserting $\left| b \right>$ and $\left| c \right>$ into Eq. \ref{bc} gives:
\begin{equation} \left< b | c \right > = b_1 c_1 + b_2 c_2 = bc \cos \alpha, \end{equation}
\begin{equation} b \cos \gamma \cdot c \cos \beta + b \sin \gamma \cdot c_2 = bc \cos \alpha, \end{equation}
\begin{equation} c_2 = \frac{c \cos \alpha - c \cos \gamma \cos \beta}{\sin \gamma}. \end{equation}
The last component, $c_3$, can be obtained from the vector length normalisation, $ \left< c | c \right> = c^2 $:
\begin{equation} \left< c | c \right > = c_1^2 + c_2^2 + c_3^2 = c^2, \end{equation}
\begin{equation} c_3^2 = c^2 - c_1^2 - c_2^2, \end{equation}
\begin{equation} c_3^2 = c^2 \left[1 - \cos^2 \beta - \left(\frac{\cos \alpha - \cos \gamma \cos \beta}{\sin \gamma} \right)^2 \right], \end{equation}
\begin{equation} \boxed{ \left| c \right> = \left( \begin{array}{c}
c \cdot \cos \beta \\
c \cdot \frac{\cos \alpha - \cos \gamma \cos \beta}{\sin \gamma} \\
c \cdot \sqrt{ 1 - \cos^2 \beta - \left(\frac{\cos \alpha - \cos \gamma \cos \beta}{\sin \gamma} \right)^2 }
\end{array} \right). } \label{avec} \end{equation}
The crystallographic $A$ matrix, which transforms real-space fractional to lab coordinates (A), is formed with the basis vectors in its columns:
\begin{equation}
A = \left(
\begin{array}{ccc}
\left| a \right> & \left| b \right> & \left| c \right>
\end{array}
\right).
\end{equation}
The $B$ matrix, which transforms reciprocal-space relative lattice units (rlu) to lab coordinates (1/\AA), is:
\begin{equation} B = 2 \pi A^{-t}, \end{equation}
where $-t$ denotes the transposed inverse.
The metric tensor corresponding to the coordinate system defined by the $B$ matrix is:
\begin{equation} \left(g_{ij}\right) = \left<\bm{b_i} | \bm{b_j} \right> = B^T B, \end{equation}
where the reciprocal basis vectors $\left| \bm{b_i} \right>$ form the columns of $B$.
\subsection*{Example: Lengths and Angles in the Reciprocal Lattice}
Having a metric makes it straightforward to calculate lengths and angles.
The length of a reciprocal lattice vector $\left| G \right>$ seen from the lab system is (in 1/\AA{} units):
\begin{equation}
\left\Vert \left< G | G \right> \right\Vert = \sqrt{\left< G | G \right>} = \sqrt{G_i G^j} = \sqrt{g_{ij} G^i G^j}.
\end{equation}
The angle $\theta$ between two Bragg peaks $\left| G \right>$ and $\left| H \right>$ is given by their dot product:
\begin{equation}
\frac{\left< G | H \right>}{\left\Vert \left< G | G \right> \right\Vert \cdot \left\Vert \left< H | H \right> \right\Vert} = \cos \theta,
\end{equation}
%\begin{equation}
% \frac{G_i H^j }{\left\Vert \left< G | G \right> \right\Vert \cdot \left\Vert \left< H | H \right> \right\Vert} = \cos \theta,
%\end{equation}
\begin{equation}
\frac{g_{ij} G^i H^j }{\sqrt{g_{ij} G^i G^j} \sqrt{g_{ij} H^i H^j}} = \cos \theta.
\end{equation}
% ------------------------------------------------------------------------------------------------------------------------------------
% ------------------------------------------------------------------------------------------------------------------------------------
\section{TAS Angles and Scattering Triangle}
\begin{figure}
\begin{center}
\includegraphics[width = 0.5 \textwidth]{tas}
\hspace{1.5cm}
\includegraphics[trim=0 -2cm 0 0, width=0.25\textwidth]{triangle}
\end{center}
\caption{Triple-axis layout and scattering triangle.}
\end{figure}
\subsection*{Monochromator Angles $a_1$, $a_2$ and Analyser Angles $a_5$, $a_6$}
The monochromator (and analyser) angles follow directly from Bragg's equation:
\begin{equation} 2 d_{m,a}\sin a_{1,5} = n \lambda_{i,f}, \end{equation}
\begin{equation} 2 k_{i,f} \sin a_{1,5} = 2 \pi n / d_{m,a}, \end{equation}
\begin{equation} \boxed{ a_{1,5} = \arcsin \left( \frac{\pi n}{d_{m,a} \cdot k_{i,f}} \right). } \end{equation}
Fulfilling the Bragg condition, the angles $a_2$ and $a_6$ are simply: $a_{2,6} = 2 \cdot a_{1,5}.$
\subsection*{Scattering Angle $a_4$}
\begin{equation} \left| Q \right> = \left| k_i \right> - \left| k_f \right> \\ \end{equation}
\begin{equation} \left< Q | Q \right> = \left( \left< k_i \right| - \left< k_f \right| \right) \cdot \left( \left| k_i \right> - \left| k_f \right> \right) \end{equation}
\begin{equation} \left< Q | Q \right> = \left< k_i | k_i \right> + \left< k_f | k_f \right> - 2 \left< k_i | k_f \right> \end{equation}
\begin{equation} Q^2 = k_i^2 + k_f^2 - 2 k_i k_f \cos a_4 \end{equation}
\begin{equation} \boxed{ a_4 = \sigma_s \cdot \arccos \left( \frac{k_i^2 + k_f^2 - Q^2}{2 k_i k_f} \right) } \end{equation}
The sign of $a_4$ is given by the sample scattering sense $\sigma_s = \pm 1$.
\subsection*{Rocking Angle $a_3$}
\begin{equation} \boxed{ a_3 = 180^{\circ} - \left( \psi + \xi \right) } \end{equation}
\subsubsection*{Angle $\psi$}
Angle $\psi$ between $\left| k_i \right>$ and $\left| Q \right>$, in units of \AA{}$^{-1}$, as before:
\begin{equation} \left| k_f \right> = \left| k_i \right> - \left| Q \right> \end{equation}
\begin{equation} \left< k_f | k_f \right> = \left( \left< k_i \right| - \left< Q \right| \right) \cdot \left( \left| k_i \right> - \left| Q \right> \right) \end{equation}
\begin{equation} \left< k_f | k_f \right> = \left< k_i | k_i \right> + \left< Q | Q \right> - 2 \left< k_i | Q \right> \end{equation}
\begin{equation} k_f^2 = k_i^2 + Q^2 - 2 k_i Q \cos \psi \end{equation}
\begin{equation} \boxed{ \psi = \sigma_s \cdot \arccos \left( \frac{k_i^2 + Q^2 - k_f^2}{2 k_i Q} \right) } \end{equation}
\subsubsection*{Angle $\xi$}
Angle $\xi$ between $\left| Q \right>$ and orientation vector $\left| a \right>$ (i.e. $ax$, $ay$, $az$), in units of rlu:
\begin{equation} \xi = \sigma_{\mathrm{side}} \cdot \arccos \left( \frac{ \left< Q | a \right> }{ \sqrt{\left< Q | Q \right>} \sqrt{\left< a | a \right>} } \right) \end{equation}
\begin{equation} \boxed{ \xi = \sigma_{\mathrm{side}} \cdot \arccos \left( \frac{ Q^i g_{ij} a^j }{ \sqrt{Q^i g_{ij} Q^j} \sqrt{a^i g_{ij} a^j} } \right) } \end{equation}
The sign, $\sigma_{\mathrm{side}}$, of $\xi$ depends on which side of the orientation vector $\left| a \right>$ the scattering vector $\left| Q \right>$
is located. The sign can be found by calculating the (covariant) cross product of $\left| a \right>$ and $\left| Q \right>$ to give an out-of-plane vector
which can be compared with the given scattering plane up vector.
\paragraph*{Special case}
Special case for cubic crystals, $g_{ij} = \delta_{ij} \cdot \left( 2\pi / a \right)^2$:
\begin{equation} \xi = \sigma_{\mathrm{side}} \cdot \arccos \left( \frac{ Q_i a^i }{ \sqrt{Q_i Q^i} \sqrt{a_i a^i} } \right) \end{equation}
% ------------------------------------------------------------------------------------------------------------------------------------
% ====================================================================================================================================
\section{Bibliographic information}
The UB matrix formalism to convert between relative lattice units and laboratory or instrument coordinates is described in \cite{Lumsden2005}.
\bibliographystyle{alpha}
\bibliography{\jobname.bib}
\end{document}
This diff is collapsed.
This diff is collapsed.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="35.07008mm"
height="27.54096mm"
viewBox="0 0 124.26406 97.586079"
id="svg2"
version="1.1"
inkscape:version="0.91 r13725"
sodipodi:docname="triangle.svg">
<defs