qhull.pyx 74.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# **************************************************************************
#
# MDANSE: Molecular Dynamics Analysis for Neutron Scattering Experiments
#
# @file      Extensions/qhull.pyx
# @brief     Implements module/class/test qhull
#
# @homepage  https://mdanse.org
# @license   GNU General Public License v3 or higher (see LICENSE)
# @copyright Institut Laue Langevin 2013-now
# @authors   Scientific Computing Group at ILL (see AUTHORS)
#
# **************************************************************************

eric pellegrini's avatar
eric pellegrini committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
#
# Copyright (C)  Pauli Virtanen, 2010.
#
# Distributed under the same BSD license as Scipy.
#


import threading
import numpy as np
cimport numpy as np
cimport cython
#cimport qhull
cimport setlist

from numpy.compat import asbytes

__all__ = ['Delaunay', 'ConvexHull', 'Voronoi', 'tsearch']

#------------------------------------------------------------------------------
# Qhull interface
#------------------------------------------------------------------------------

cdef extern from "stdio.h":
    extern void *stdin
    extern void *stderr
    extern void *stdout

cdef extern from "math.h":
    double fabs(double x) nogil
    double sqrt(double x) nogil

cdef extern from "setjmp.h" nogil:
    ctypedef struct jmp_buf:
        pass
    int setjmp(jmp_buf STATE) nogil
    void longjmp(jmp_buf STATE, int VALUE) nogil

# Define the clockwise constant
cdef extern from "user.h":
    cdef enum:
        qh_ORIENTclock

cdef extern from "qset.h":
    ctypedef union setelemT:
        void *p
        int i

    ctypedef struct setT:
        int maxsize
        setelemT e[1]

    int qh_setsize(setT *set) nogil
    void qh_setappend(setT **setp, void *elem) nogil

cdef extern from "libqhull.h":
    ctypedef double realT
    ctypedef double coordT
    ctypedef double pointT
    ctypedef int boolT
    ctypedef unsigned int flagT

    ctypedef struct facetT:
        coordT offset
        coordT *center
        coordT *normal
        facetT *next
        facetT *previous
        unsigned id
        setT *vertices
        setT *neighbors
        setT *ridges
        setT *coplanarset
        flagT simplicial
        flagT flipped
        flagT upperdelaunay
        flagT toporient
        unsigned visitid

    ctypedef struct vertexT:
        vertexT *next
        vertexT *previous
        unsigned int id, visitid
        pointT *point
        setT *neighbors

    ctypedef struct ridgeT:
        setT *vertices
        facetT *top
        facetT *bottom

    ctypedef struct qhT:
        boolT DELAUNAY
        boolT SCALElast
        boolT KEEPcoplanar
        boolT MERGEexact
        boolT NOerrexit
        boolT PROJECTdelaunay
        boolT ATinfinity
        boolT UPPERdelaunay
        boolT hasTriangulation
        int normal_size
        char *qhull_command
        facetT *facet_list
        facetT *facet_tail
        vertexT *vertex_list
        vertexT *vertex_tail
        int num_facets
        int num_points
        int center_size
        unsigned int facet_id
        pointT *first_point
        pointT *input_points
        realT last_low
        realT last_high
        realT last_newhigh
        realT max_outside
        realT MINoutside
        realT DISTround
        jmp_buf errexit
        setT *other_points
        unsigned int visit_id
        unsigned int vertex_visit

    extern qhT *qh_qh
    extern int qh_PRINToff
    extern int qh_ALL

    void qh_init_A(void *inp, void *out, void *err, int argc, char **argv) nogil
    void qh_init_B(realT *points, int numpoints, int dim, boolT ismalloc) nogil
    void qh_checkflags(char *, char *) nogil
    void qh_initflags(char *) nogil
    void qh_option(char *, char*, char* ) nogil
    void qh_freeqhull(boolT) nogil
    void qh_memfreeshort(int *curlong, int *totlong) nogil
    void qh_qhull() nogil
    void qh_check_output() nogil
    void qh_produce_output() nogil
    void qh_triangulate() nogil
    void qh_checkpolygon() nogil
    void qh_findgood_all() nogil
    void qh_appendprint(int format) nogil
    setT *qh_pointvertex() nogil
    realT *qh_readpoints(int* num, int *dim, boolT* ismalloc) nogil
    int qh_new_qhull(int dim, int numpoints, realT *points,
                     boolT ismalloc, char* qhull_cmd, void *outfile,
                     void *errfile) nogil
    int qh_pointid(pointT *point) nogil
    vertexT *qh_nearvertex(facetT *facet, pointT *point, double *dist) nogil
    boolT qh_addpoint(pointT *furthest, facetT *facet, boolT checkdist) nogil
    facetT *qh_findbestfacet(pointT *point, boolT bestoutside,
                             realT *bestdist, boolT *isoutside) nogil
    void qh_setdelaunay(int dim, int count, pointT *points) nogil
    void qh_restore_qhull(qhT **oldqh) nogil
    qhT *qh_save_qhull() nogil

cdef extern from "io.h":
    ctypedef enum qh_RIDGE:
        qh_RIDGEall
        qh_RIDGEinner
        qh_RIDGEouter

    ctypedef void printvridgeT(void *fp, vertexT *vertex, vertexT *vertexA,
                               setT *centers, boolT unbounded)
    int qh_eachvoronoi_all(void *fp, void* printvridge,
                           boolT isUpper, qh_RIDGE innerouter,
                           boolT inorder) nogil

    void qh_order_vertexneighbors(vertexT *vertex) nogil
    int qh_compare_facetvisit(void *p1, void *p2) nogil

cdef extern from "geom.h":
    pointT *qh_facetcenter(setT *vertices) nogil

cdef extern from "poly.h":
    void qh_check_maxout() nogil

cdef extern from "mem.h":
    void qh_memfree(void *object, int insize)

"""
Qhull shared definitions, for use by other Cython modules

"""
#
# Copyright (C)  Pauli Virtanen, 2010.
#
# Distributed under the same BSD license as Scipy.
#

cdef extern from "numpy/ndarrayobject.h":
    cdef enum:
        NPY_MAXDIMS

ctypedef struct DelaunayInfo_t:
    int ndim
    int npoints
    int nsimplex
    double *points
    int *simplices
    int *neighbors
    double *equations
    double *transform
    int *vertex_to_simplex
    double paraboloid_scale
    double paraboloid_shift
    double *max_bound
    double *min_bound
    int *vertex_neighbors_indices
    int *vertex_neighbors_indptr

# Finding simplices
#

from libc.string cimport memcpy
from libc.stdlib cimport qsort

#------------------------------------------------------------------------------
# LAPACK interface
#------------------------------------------------------------------------------

# removed -> qh_dgetrf, qh_dgetrs, qh_dgecon not used anymore

#------------------------------------------------------------------------------
# Qhull wrapper
#------------------------------------------------------------------------------

# Qhull is not threadsafe: needs locking
_qhull_lock = threading.Lock()

# Qhull has (swappable) global state: keep track which Qhull instance is active
# and how many instances are alive
cdef _Qhull _active_qhull = None
cdef int _qhull_count = 0

# Qhull objects pending cleanup
#
# Python's garbage collector can trigger a call to a destructor while
# the qhull lock is held.  Destructors, for instance that of
# Voronoi/etc, can call _Qhull methods that require the lock, which
# causes a deadlock also in a single-threaded code.
#
# We ensure that _Qhull.close is safe to call from a destructor, by
# postponing the cleanup if the lock happens to be held. The other
# methods are not safe to call.
#
cdef list _qhull_pending_cleanup = []

class QhullError(RuntimeError):
    pass

@cython.final
cdef class _Qhull:
    cdef qhT *_saved_qh
    cdef list _point_arrays
    cdef public bytes options
    cdef public bytes mode_option
    cdef public object furthest_site

    cdef readonly int ndim
    cdef int numpoints, _is_delaunay
    cdef np.ndarray _ridge_points

    cdef list _ridge_vertices
    cdef object _ridge_error
    cdef int _nridges

    cdef np.ndarray _ridge_equations

    @cython.final
    def __init__(self,
                 bytes mode_option,
                 np.ndarray[np.double_t, ndim=2] points,
                 bytes options=None,
                 bytes required_options=None,
                 furthest_site=False,
                 incremental=False):
        global _active_qhull, _qhull_count
        cdef int exitcode

        points = np.ascontiguousarray(points, dtype=np.double)

        self.numpoints = points.shape[0]
        self.ndim = points.shape[1]

        if self.numpoints <= 0:
            raise ValueError("No points given")
        if self.ndim < 2:
            raise ValueError("Need at least 2-D data")

        # Process options
        option_set = set()
        if options is not None:
            option_set.update(options.split())
        if furthest_site:
            if b"Qz" in option_set:
                option_set.remove(b"Qz")
            option_set.add(b"Qu")
        if required_options is not None:
            required_option_set = set(required_options.split())
            if b"QJ" in option_set and b"Qt" in required_option_set:
                # safe to remove, QJ always produces simplical output
                required_option_set.remove(b"Qt")
            option_set.update(required_option_set)

        if incremental:
            incremental_bad_ops = set([b'Qbb', b'Qbk', b'QBk', b'QbB', b'Qz'])
            bad_opts = []
            for bad_opt in incremental_bad_ops:
                if bad_opt in options:
                    bad_opts.append(bad_opt)
            if bad_opts:
                raise ValueError("Qhull options %r are incompatible "
                                 "with incremental mode" % (bad_opts,))

            if b"Qt" in option_set:
                # Qhull wants this
                option_set.add(b"Q11")

            # We need to own the copy of the points in incremental mode
            points = points.copy()

        if mode_option in (b"d", b"v"):
            self._is_delaunay = 1
        else:
            self._is_delaunay = 0

        self._point_arrays = [points]
        self.options = b" ".join(option_set)
        self.mode_option = mode_option
        self.furthest_site = furthest_site

        options = b"qhull "  + mode_option +  b" " + self.options

        _qhull_lock.acquire()
        try:
            if _active_qhull is not None:
                _active_qhull._deactivate()

            _active_qhull = self
            _qhull_count += 1

            options_c = <char*>options
            with nogil:
                exitcode = qh_new_qhull(self.ndim, self.numpoints,
                                        <realT*>points.data, 0,
                                        options_c, NULL, stderr)

            if exitcode != 0:
                self._uninit()
                raise QhullError("Qhull error")
        finally:
            _qhull_lock.release()

    @cython.final
    def close(self):
        if _qhull_lock.acquire(False):
            try:
                self._cleanup_pending()
                self._uninit()
            finally:
                _qhull_lock.release()
        else:
            # Failed to acquire the lock. 
            _qhull_pending_cleanup.append(self)

    @cython.final
    cdef int _cleanup_pending(self) except -1:
        """
        Process any pending cleanups (_qhull_lock MUST be held when calling this)
        """
        cdef _Qhull qh
        cdef int k

        for k in range(len(_qhull_pending_cleanup)):
            try:
                qh = _qhull_pending_cleanup.pop()
            except IndexError:
                break
            qh._uninit()

        return 0

    @cython.final
    cdef int _activate(self) except -1:
        """
        Activate this instance (_qhull_lock MUST be held when calling this)
        """
        global _active_qhull

        if _active_qhull is self:
            return 0
        elif _active_qhull is not None:
            _active_qhull._deactivate()

        assert _active_qhull is None

        if self._saved_qh == NULL:
            raise RuntimeError("Qhull instance is closed")

        qh_restore_qhull(&self._saved_qh)
        self._saved_qh = NULL
        _active_qhull = self

        return 0

    @cython.final
    cdef int _deactivate(self) except -1:
        """
        Deactivate this instance (_qhull_lock MUST be held when calling this)
        """
        global _active_qhull

        assert _active_qhull is self
        assert self._saved_qh == NULL

        self._saved_qh = qh_save_qhull()
        _active_qhull = None

    @cython.final
    cdef int _uninit(self) except -1:
        """
        Uninitialize this instance (_qhull_lock MUST be held when calling this)
        """
        global _active_qhull, _qhull_count
        cdef int curlong, totlong

        if not (_active_qhull is self or self._saved_qh != NULL):
            # already freed
            return 0

        self._activate()

        qh_freeqhull(qh_ALL)

        _qhull_count -= 1
        _active_qhull = None
        self._saved_qh = NULL

        if _qhull_count == 0:
            # last one out cleans the house
            qh_memfreeshort(&curlong, &totlong)
            if curlong != 0 or totlong != 0:
                raise QhullError(
                    "qhull: did not free %d bytes (%d pieces)" %
                    (totlong, curlong))

        return 0

    @cython.final
    def get_points(self):
        if len(self._point_arrays) == 1:
            return self._point_arrays[0]
        else:
            return np.concatenate(
                [x[:,:self.ndim] for x in self._point_arrays],
                axis=0)

    @cython.final
    def add_points(self, points):
        cdef int j
        cdef realT *p
        cdef facetT *facet
        cdef double bestdist
        cdef boolT isoutside
        cdef np.ndarray arr

        points = np.asarray(points)
        if points.ndim!=2 or points.shape[1] != self._point_arrays[0].shape[1]:
            raise ValueError("invalid size for new points array")
        if points.size == 0:
            return

        if self._is_delaunay:
            arr = np.empty((points.shape[0], self.ndim+1), dtype=np.double)
            arr[:,:-1] = points
        else:
            arr = np.array(points, dtype=np.double, order="C", copy=True)

        _qhull_lock.acquire()
        try:
            self._activate()

            # nonlocal error handling
            exitcode = setjmp(qh_qh.errexit)
            if exitcode != 0:
                raise QhullError("Qhull error")
            qh_qh.NOerrexit = 0

            # add points to triangulation
            if self._is_delaunay:
                # lift to paraboloid
                qh_setdelaunay(arr.shape[1], arr.shape[0], <realT*>arr.data)

            p = <realT*>arr.data

            for j in xrange(arr.shape[0]):
                facet = qh_findbestfacet(p, 0, &bestdist, &isoutside)
                if isoutside:
                    if not qh_addpoint(p, facet, 0):
                        break
                else:
                    # append the point to the "other points" list, to
                    # maintain the point IDs
                    qh_setappend(&qh_qh.other_points, p)

                p += arr.shape[1]

            qh_check_maxout()
            qh_qh.hasTriangulation = 0

            self._point_arrays.append(arr)
        finally:
            qh_qh.NOerrexit = 1
            _qhull_lock.release()

    @cython.final
    def get_paraboloid_shift_scale(self):
        cdef double paraboloid_scale
        cdef double paraboloid_shift

        _qhull_lock.acquire()
        try:
            self._activate()

            if qh_qh.SCALElast:
                paraboloid_scale = qh_qh.last_newhigh / (
                    qh_qh.last_high - qh_qh.last_low)
                paraboloid_shift = - qh_qh.last_low * paraboloid_scale
            else:
                paraboloid_scale = 1.0
                paraboloid_shift = 0.0
        finally:
            _qhull_lock.release()

        return paraboloid_scale, paraboloid_shift

    @cython.final
    def triangulate(self):
        _qhull_lock.acquire()
        try:
            self._activate()

            with nogil:
                qh_triangulate() # get rid of non-simplical facets
        finally:
            _qhull_lock.release()

    @cython.final
    def get_simplex_facet_array(self):
        _qhull_lock.acquire()
        try:
            self._activate()
            return self._get_simplex_facet_array()
        finally:
            _qhull_lock.release()

    @cython.final
    @cython.boundscheck(False)
    @cython.cdivision(True)
    cdef _get_simplex_facet_array(self):
        """
        Return array of simplical facets currently in Qhull.

        Returns
        -------
        facets : array of int, shape (nfacets, ndim+1)
            Indices of coordinates of vertices forming the simplical facets
        neighbors : array of int, shape (nfacets, ndim)
            Indices of neighboring facets.  The kth neighbor is opposite
            the kth vertex, and the first neighbor is the horizon facet
            for the first vertex.

            Facets extending to infinity are denoted with index -1.
        equations : array of double, shape (nfacets, ndim+2)

        """
        cdef facetT* facet
        cdef facetT* neighbor
        cdef vertexT *vertex
        cdef pointT *point
        cdef int i, j, ipoint, ipoint2, ncoplanar
        cdef object tmp
        cdef np.ndarray[np.npy_int, ndim=2] facets
        cdef np.ndarray[np.npy_int, ndim=2] neighbors
        cdef np.ndarray[np.npy_int, ndim=2] coplanar
        cdef np.ndarray[np.double_t, ndim=2] equations
        cdef np.ndarray[np.npy_int, ndim=1] id_map
        cdef double dist
        cdef int facet_ndim
        cdef int numpoints
        cdef unsigned int lower_bound
        cdef unsigned int swapped_index

        facet_ndim = self.ndim
        numpoints = self.numpoints

        if self._is_delaunay:
            facet_ndim += 1

        id_map = np.empty((qh_qh.facet_id,), dtype=np.intc)
        id_map.fill(-1)

        # Compute facet indices
        with nogil:
            facet = qh_qh.facet_list
            j = 0
            while facet and facet.next:
                if not self._is_delaunay or facet.upperdelaunay == qh_qh.UPPERdelaunay:
                    if not facet.simplicial and ( \
                           qh_setsize(facet.vertices) != facet_ndim or \
                           qh_setsize(facet.neighbors) != facet_ndim):
                        with gil:
                            raise QhullError(
                                "non-simplical facet encountered: %r vertices"
                                % (qh_setsize(facet.vertices),))

                    id_map[facet.id] = j
                    j += 1

                facet = facet.next

        # Allocate output
        facets = np.zeros((j, facet_ndim), dtype=np.intc)
        neighbors = np.zeros((j, facet_ndim), dtype=np.intc)
        equations = np.zeros((j, facet_ndim+1), dtype=np.double)

        ncoplanar = 0
        coplanar = np.zeros((10, 3), dtype=np.intc)

        # Retrieve facet information
        with nogil:
            facet = qh_qh.facet_list
            j = 0
            while facet and facet.next:
                if self._is_delaunay and facet.upperdelaunay != qh_qh.UPPERdelaunay:
                    facet = facet.next
                    continue

                # Use a lower bound so that the tight loop in high dimensions
                # is not affected by the conditional below
                lower_bound = 0
                if (self._is_delaunay and
                    facet.toporient == qh_ORIENTclock and facet_ndim == 3):
                    # Swap the first and second indices to maintain a
                    # counter-clockwise orientation.
                    for i in xrange(2):
                        # Save the vertex info
                        swapped_index = 1 ^ i
                        vertex = <vertexT*>facet.vertices.e[i].p
                        ipoint = qh_pointid(vertex.point)
                        facets[j, swapped_index] = ipoint

                        # Save the neighbor info
                        neighbor = <facetT*>facet.neighbors.e[i].p
                        neighbors[j, swapped_index] = id_map[neighbor.id]

                    lower_bound = 2

                for i in xrange(lower_bound, facet_ndim):
                    # Save the vertex info
                    vertex = <vertexT*>facet.vertices.e[i].p
                    ipoint = qh_pointid(vertex.point)
                    facets[j, i] = ipoint

                    # Save the neighbor info
                    neighbor = <facetT*>facet.neighbors.e[i].p
                    neighbors[j, i] = id_map[neighbor.id]

                # Save simplex equation info
                for i in xrange(facet_ndim):
                    equations[j, i] = facet.normal[i]
                equations[j, facet_ndim] = facet.offset

                # Save coplanar info
                if facet.coplanarset:
                    for i in range(qh_setsize(facet.coplanarset)):
                        point = <pointT*>facet.coplanarset.e[i].p
                        vertex = qh_nearvertex(facet, point, &dist)

                        if ncoplanar >= coplanar.shape[0]:
                            with gil:
                                tmp = coplanar
                                coplanar = None
                                try:
                                    tmp.resize(2 * ncoplanar + 1, 3)
                                except ValueError:
                                    # Work around Cython issue on Python 2.4
                                    tmp = np.resize(tmp, (2*ncoplanar+1, 3))
                                coplanar = tmp

                        coplanar[ncoplanar, 0] = qh_pointid(point)
                        coplanar[ncoplanar, 1] = id_map[facet.id]
                        coplanar[ncoplanar, 2] = qh_pointid(vertex.point)
                        ncoplanar += 1

                j += 1
                facet = facet.next

        return facets, neighbors, equations, coplanar[:ncoplanar]

    @cython.final
    def get_voronoi_diagram(_Qhull self):
        _qhull_lock.acquire()
        try:
            self._activate()
            return self._get_voronoi_diagram()
        finally:
            _qhull_lock.release()

    @cython.final
    @cython.boundscheck(False)
    @cython.cdivision(True)
    cdef _get_voronoi_diagram(_Qhull self):
        """
        Return the voronoi diagram currently in Qhull.

        Returns
        -------
        voronoi_vertices : array of double, shape (nvoronoi_vertices, ndim)
            Coordinates of the Voronoi vertices

        ridge_points : array of double, shape (nridges, 2)
            Voronoi ridges, as indices to the points array.

        ridge_vertices : list of lists, shape (nridges, *)
            Voronoi vertices for each Voronoi ridge, as indices to
            the Voronoi vertices array.
            Infinity is indicated by index ``-1``.

        regions : list of lists, shape (nregion, *)
            Voronoi vertices of all regions.

        point_region : array of int, shape (npoint,)
            Index of the Voronoi region for each input point.

        """
        cdef int i, j, k
        cdef vertexT *vertex
        cdef facetT *neighbor
        cdef facetT *facet

        cdef object tmp
        cdef np.ndarray[np.double_t, ndim=2] voronoi_vertices
        cdef np.ndarray[np.intp_t, ndim=1] point_region
        cdef int nvoronoi_vertices
        cdef pointT infty_point[NPY_MAXDIMS+1]
        cdef pointT *point
        cdef pointT *center
        cdef double dist
        cdef int inf_seen

        cdef list regions
        cdef list cur_region

        # -- Grab Voronoi ridges
        self._nridges = 0
        self._ridge_error = None
        self._ridge_points = np.empty((10, 2), np.intc)
        self._ridge_vertices = []

        qh_eachvoronoi_all(<void*>self, &_visit_voronoi, qh_qh.UPPERdelaunay,
                           qh_RIDGEall, 1)

        self._ridge_points = self._ridge_points[:self._nridges]

        if self._ridge_error is not None:
            raise self._ridge_error

        # Now, qh_eachvoronoi_all has initialized the visitids of facets
        # to correspond do the Voronoi vertex indices.

        # -- Grab Voronoi regions
        regions = []

        point_region = np.empty((self.numpoints,), np.intp)
        point_region.fill(-1)

        vertex = qh_qh.vertex_list
        while vertex and vertex.next:
            qh_order_vertexneighbors_nd(self.ndim+1, vertex)

            i = qh_pointid(vertex.point)
            if i < self.numpoints:
                # Qz results to one extra point
                point_region[i] = len(regions)

            inf_seen = 0
            cur_region = []
            for k in xrange(qh_setsize(vertex.neighbors)):
                neighbor = <facetT*>vertex.neighbors.e[k].p
                i = neighbor.visitid - 1
                if i == -1:
                    if not inf_seen:
                        inf_seen = 1
                    else:
                        continue
                cur_region.append(int(i))
            if len(cur_region) == 1 and cur_region[0] == -1:
                # report similarly as qvoronoi o
                cur_region = []
            regions.append(cur_region)

            vertex = vertex.next

        # -- Grab Voronoi vertices and point-to-region map
        nvoronoi_vertices = 0
        voronoi_vertices = np.empty((10, self.ndim), np.double)

        facet = qh_qh.facet_list
        while facet and facet.next:
            if facet.visitid > 0:
                # finite Voronoi vertex

                center = qh_facetcenter(facet.vertices)

                nvoronoi_vertices = max(facet.visitid, nvoronoi_vertices)
                if nvoronoi_vertices >= voronoi_vertices.shape[0]:
                    tmp = voronoi_vertices
                    voronoi_vertices = None
                    try:
                        tmp.resize(2*nvoronoi_vertices + 1, self.ndim)
                    except ValueError:
                        tmp = np.resize(tmp, (2*nvoronoi_vertices+1, self.ndim))
                    voronoi_vertices = tmp

                for k in range(self.ndim):
                    voronoi_vertices[facet.visitid-1, k] = center[k]

                qh_memfree(center, qh_qh.center_size)

                if facet.coplanarset:
                    for k in range(qh_setsize(facet.coplanarset)):
                        point = <pointT*>facet.coplanarset.e[k].p
                        vertex = qh_nearvertex(facet, point, &dist)

                        i = qh_pointid(point)
                        j = qh_pointid(vertex.point)

                        if i < self.numpoints:
                            # Qz can result to one extra point
                            point_region[i] = point_region[j]

            facet = facet.next

        voronoi_vertices = voronoi_vertices[:nvoronoi_vertices]

        return voronoi_vertices, self._ridge_points, self._ridge_vertices, \
               regions, point_region

    @cython.final
    def get_extremes_2d(_Qhull self):
        if self._is_delaunay:
            raise ValueError("Cannot compute for Delaunay")

        _qhull_lock.acquire()
        try:
            self._activate()
            return self._get_extremes_2d()
        finally:
            _qhull_lock.release()

    @cython.final
    @cython.boundscheck(False)
    @cython.cdivision(True)
    cdef _get_extremes_2d(_Qhull self):
        """
        Compute the extremal points in a 2-D convex hull, i.e. the
        vertices of the convex hull, ordered counterclockwise.

        See qhull/io.c:qh_printextremes_2d

        """
        cdef facetT *facet, *startfacet, *nextfacet
        cdef vertexT *vertexA, *vertexB
        cdef int[:] extremes
        cdef int nextremes

        nextremes = 0
        extremes_arr = np.zeros(100, dtype=np.intc)
        extremes = extremes_arr

        qh_qh.visit_id += 1
        qh_qh.vertex_visit += 1

        facet = qh_qh.facet_list
        startfacet = facet
        while facet:
            if facet.visitid == qh_qh.visit_id:
                raise QhullError("Qhull internal error: loop in facet list")

            if facet.toporient:
                vertexA = <vertexT*>facet.vertices.e[0].p
                vertexB = <vertexT*>facet.vertices.e[1].p
                nextfacet = <facetT*>facet.neighbors.e[0].p
            else:
                vertexB = <vertexT*>facet.vertices.e[0].p
                vertexA = <vertexT*>facet.vertices.e[1].p
                nextfacet = <facetT*>facet.neighbors.e[1].p

            if nextremes + 2 >= extremes.shape[0]:
                extremes = None
                extremes_arr.resize(2*extremes_arr.shape[0]+1)
                extremes = extremes_arr

            if vertexA.visitid != qh_qh.vertex_visit:
                vertexA.visitid = qh_qh.vertex_visit
                extremes[nextremes] = qh_pointid(vertexA.point)
                nextremes += 1

            if vertexB.visitid != qh_qh.vertex_visit:
                vertexB.visitid = qh_qh.vertex_visit
                extremes[nextremes] = qh_pointid(vertexB.point)
                nextremes += 1

            facet.visitid = qh_qh.visit_id
            facet = nextfacet

            if facet == startfacet:
                break

        extremes = None
        extremes_arr.resize(nextremes)
        return extremes_arr


cdef void _visit_voronoi(void *ptr, vertexT *vertex, vertexT *vertexA,
                         setT *centers, boolT unbounded):
    cdef _Qhull qh = <_Qhull>ptr
    cdef int point_1, point_2, ix
    cdef list cur_vertices

    if qh._ridge_error is not None:
        return

    if qh._nridges >= qh._ridge_points.shape[0]:
        try:
            qh._ridge_points.resize(2*qh._nridges + 1, 2)
        except Exception, e:
            qh._ridge_error = e
            return

    # Record which points the ridge is between
    point_1 = qh_pointid(vertex.point)
    point_2 = qh_pointid(vertexA.point)

    p = <int*>qh._ridge_points.data
    p[2*qh._nridges + 0] = point_1
    p[2*qh._nridges + 1] = point_2

    # Record which voronoi vertices constitute the ridge
    cur_vertices = []
    for i in xrange(qh_setsize(centers)):
        ix = (<facetT*>centers.e[i].p).visitid - 1
        cur_vertices.append(ix)
    qh._ridge_vertices.append(cur_vertices)

    qh._nridges += 1

    return

cdef void qh_order_vertexneighbors_nd(int nd, vertexT *vertex):
    if nd == 3:
        qh_order_vertexneighbors(vertex)
    elif nd >= 4:
        qsort(<facetT**>&vertex.neighbors.e[0].p, qh_setsize(vertex.neighbors),
              sizeof(facetT*), qh_compare_facetvisit)


#------------------------------------------------------------------------------
# Barycentric coordinates 
#------------------------------------------------------------------------------

# _get_barycentric_transforms function removed (lapack dependency inacceptable)

@cython.boundscheck(False)
cdef double _matrix_norm1(int n, double *a) nogil:
    """Compute the 1-norm of a square matrix given in in Fortran order"""
    cdef double maxsum = 0, colsum
    cdef int i, j

    for j in range(n):
        colsum = 0
        for i in range(n):
            colsum += fabs(a[0])
            a += 1
        if maxsum < colsum:
            maxsum = colsum
    return maxsum

cdef int _barycentric_inside(int ndim, double *transform,
                             double *x, double *c, double eps) nogil:
    """
    Check whether point is inside a simplex, using barycentric
    coordinates.  `c` will be filled with barycentric coordinates, if
    the point happens to be inside.

    """
    cdef int i, j
    c[ndim] = 1.0
    for i in xrange(ndim):
        c[i] = 0
        for j in xrange(ndim):
            c[i] += transform[ndim*i + j] * (x[j] - transform[ndim*ndim + j])
        c[ndim] -= c[i]

        if not (-eps <= c[i] <= 1 + eps):
            return 0
    if not (-eps <= c[ndim] <= 1 + eps):
        return 0
    return 1

cdef void _barycentric_coordinate_single(int ndim, double *transform,
                                         double *x, double *c, int i) nogil:
    """
    Compute a single barycentric coordinate.

    Before the ndim+1'th coordinate can be computed, the other must have
    been computed earlier.

    """
    cdef int j

    if i == ndim:
        c[ndim] = 1.0
        for j in xrange(ndim):
            c[ndim] -= c[j]
    else:
        c[i] = 0
        for j in xrange(ndim):
            c[i] += transform[ndim*i + j] * (x[j] - transform[ndim*ndim + j])

cdef void _barycentric_coordinates(int ndim, double *transform,
                                   double *x, double *c) nogil:
    """
    Compute barycentric coordinates.

    """
    cdef int i, j
    c[ndim] = 1.0
    for i in xrange(ndim):
        c[i] = 0
        for j in xrange(ndim):
            c[i] += transform[ndim*i + j] * (x[j] - transform[ndim*ndim + j])
        c[ndim] -= c[i]


#------------------------------------------------------------------------------
# N-D geometry
#------------------------------------------------------------------------------

cdef void _lift_point(DelaunayInfo_t *d, double *x, double *z) nogil:
    cdef int i
    z[d.ndim] = 0
    for i in xrange(d.ndim):
        z[i] = x[i]
        z[d.ndim] += x[i]**2
    z[d.ndim] *= d.paraboloid_scale
    z[d.ndim] += d.paraboloid_shift

cdef double _distplane(DelaunayInfo_t *d, int isimplex, double *point) nogil:
    """
    qh_distplane
    """
    cdef double dist
    cdef int k
    dist = d.equations[isimplex*(d.ndim+2) + d.ndim+1]
    for k in xrange(d.ndim+1):
        dist += d.equations[isimplex*(d.ndim+2) + k] * point[k]
    return dist


#------------------------------------------------------------------------------
# Finding simplices
#------------------------------------------------------------------------------

cdef int _is_point_fully_outside(DelaunayInfo_t *d, double *x,
                                 double eps) nogil:
    """
    Is the point outside the bounding box of the triangulation?

    """

    cdef int i
    for i in xrange(d.ndim):
        if x[i] < d.min_bound[i] - eps or x[i] > d.max_bound[i] + eps:
            return 1
    return 0

cdef int _find_simplex_bruteforce(DelaunayInfo_t *d, double *c,
                                  double *x, double eps,
                                  double eps_broad) nogil:
    """
    Find simplex containing point `x` by going through all simplices.

    """
    cdef int inside, isimplex
    cdef int k, m, ineighbor, iself
    cdef double *transform

    if _is_point_fully_outside(d, x, eps):
        return -1

    for isimplex in xrange(d.nsimplex):
        transform = d.transform + isimplex*d.ndim*(d.ndim+1)

        if transform[0] == transform[0]:
            # transform is valid (non-nan)
            inside = _barycentric_inside(d.ndim, transform, x, c, eps)
            if inside:
                return isimplex
        else:
            # transform is invalid (nan, implying degenerate simplex)

            # we replace this inside-check by a check of the neighbors
            # with a larger epsilon

            for k in xrange(d.ndim+1):
                ineighbor = d.neighbors[(d.ndim+1)*isimplex + k]
                if ineighbor == -1:
                    continue

                transform = d.transform + ineighbor*d.ndim*(d.ndim+1)
                if transform[0] != transform[0]:
                    # another bad simplex
                    continue

                _barycentric_coordinates(d.ndim, transform, x, c)

                # Check that the point lies (almost) inside the
                # neigbor simplex
                inside = 1
                for m in xrange(d.ndim+1):
                    if d.neighbors[(d.ndim+1)*ineighbor + m] == isimplex:
                        # allow extra leeway towards isimplex
                        if not (-eps_broad <= c[m] <= 1 + eps):
                            inside = 0
                            break
                    else:
                        # normal check
                        if not (-eps <= c[m] <= 1 + eps):
                            inside = 0
                            break
                if inside:
                    return ineighbor
    return -1

cdef int _find_simplex_directed(DelaunayInfo_t *d, double *c,
                                double *x, int *start, double eps,
                                double eps_broad) nogil:
    """
    Find simplex containing point `x` via a directed walk in the tesselation.

    If the simplex is found, the array `c` is filled with the corresponding
    barycentric coordinates.

    Notes
    -----

    The idea here is the following:

    1) In a simplex, the k-th neighbour is opposite the k-th vertex.
       Call the ridge between them the k-th ridge.

    2) If the k-th barycentric coordinate of the target point is negative,
       then the k-th vertex and the target point lie on the opposite sides
       of the k-th ridge.

    3) Consequently, the k-th neighbour simplex is *closer* to the target point
       than the present simplex, if projected on the normal of the k-th ridge.

    4) In a regular tesselation, hopping to any such direction is OK.

       Also, if one of the negative-coordinate neighbors happens to be -1,
       then the target point is outside the tesselation (because the
       tesselation is convex!).

    5) If all barycentric coordinates are in [-eps, 1+eps], we have found the
       simplex containing the target point.

    6) If all barycentric coordinates are non-negative but 5) is not true,
       we are in an inconsistent situation -- this should never happen.

    This may however enter an infinite loop due to rounding errors in
    the computation of the barycentric coordinates, so the iteration
    count needs to be limited, and a fallback to brute force provided.

    """
    cdef int k, m, ndim, inside, isimplex, cycle_k
    cdef double *transform
    cdef double v

    ndim = d.ndim
    isimplex = start[0]

    if isimplex < 0 or isimplex >= d.nsimplex:
        isimplex = 0

    # The maximum iteration count: it should be large enough so that
    # the algorithm usually succeeds, but smaller than nsimplex so
    # that for the cases where the algorithm fails, the main cost
    # still comes from the brute force search.

    for cycle_k in range(1 + d.nsimplex//4):
        if isimplex == -1:
            break

        transform = d.transform + isimplex*ndim*(ndim+1)

        inside = 1
        for k in xrange(ndim+1):
            _barycentric_coordinate_single(ndim, transform, x, c, k)

            if c[k] < -eps:
                # The target point is in the direction of neighbor `k`!
                m = d.neighbors[(ndim+1)*isimplex + k]
                if m == -1:
                    # The point is outside the triangulation: bail out
                    start[0] = isimplex
                    return -1

                isimplex = m
                inside = -1
                break
            elif c[k] <= 1 + eps:
                # we're inside this simplex
                pass
            else:
                # we're outside (or the coordinate is nan; a degenerate simplex)
                inside = 0

        if inside == -1:
            # hopped to another simplex
            continue
        elif inside == 1:
            # we've found the right one!
            break
        else:
            # we've failed utterly (degenerate simplices in the way).
            # fall back to brute force
            isimplex = _find_simplex_bruteforce(d, c, x, eps, eps_broad)
            break
    else:
        # the algorithm failed to converge -- fall back to brute force
        isimplex = _find_simplex_bruteforce(d, c, x, eps, eps_broad)

    start[0] = isimplex
    return isimplex

cdef int _find_simplex(DelaunayInfo_t *d, double *c,
                       double *x, int *start, double eps,
                       double eps_broad) nogil:
    """
    Find simplex containing point `x` by walking the triangulation.

    Notes
    -----
    This algorithm is similar as used by ``qh_findbest``.  The idea
    is the following:

    1. Delaunay triangulation is a projection of the lower half of a convex
       hull, of points lifted on a paraboloid.

       Simplices in the triangulation == facets on the convex hull.

    2. If a point belongs to a given simplex in the triangulation,
       its image on the paraboloid is on the positive side of
       the corresponding facet.

    3. However, it is not necessarily the *only* such facet.

    4. Also, it is not necessarily the facet whose hyperplane distance
       to the point on the paraboloid is the largest.

    ..note::

        If I'm not mistaken, `qh_findbestfacet` finds a facet for
        which the plane distance is maximized -- so it doesn't always
        return the simplex containing the point given. For example:

        >>> p = np.array([(1 - 1e-4, 0.1)])
        >>> points = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127),
        ...                    (0.99440079, 0.45182168)], dtype=np.double)
        >>> tri = qhull.delaunay(points)
        >>> tri.simplices
        array([[4, 1, 0],
               [4, 2, 1],
               [3, 2, 0],
               [3, 4, 0],
               [3, 4, 2]])
        >>> dist = qhull.plane_distance(tri, p)
        >>> dist
        array([[-0.12231439,  0.00184863,  0.01049659, -0.04714842,
                0.00425905]])
        >>> tri.simplices[dist.argmax()]
        array([3, 2, 0]

        Now, the maximally positive-distant simplex is [3, 2, 0], although
        the simplex containing the point is [4, 2, 1].

    In this algorithm, we walk around the tesselation trying to locate
    a positive-distant facet. After finding one, we fall back to a
    directed search.

    """
    cdef int isimplex, i, j, k, inside, ineigh, neighbor_found
    cdef int ndim
    cdef double z[NPY_MAXDIMS+1]
    cdef double best_dist, dist
    cdef int changed

    if _is_point_fully_outside(d, x, eps):
        return -1
    if d.nsimplex <= 0:
        return -1

    ndim = d.ndim
    isimplex = start[0]

    if isimplex < 0 or isimplex >= d.nsimplex:
        isimplex = 0

    # Lift point to paraboloid
    _lift_point(d, x, z)

    # Walk the tesselation searching for a facet with a positive planar distance
    best_dist = _distplane(d, isimplex, z)
    changed = 1
    while changed:
        if best_dist > 0:
            break
        changed = 0
        for k in xrange(ndim+1):
            ineigh = d.neighbors[(ndim+1)*isimplex + k]
            if ineigh == -1:
                continue
            dist = _distplane(d, ineigh, z)

            # Note addition of eps -- otherwise, this code does not
            # necessarily terminate! The compiler may use extended
            # accuracy of the FPU so that (dist > best_dist), but
            # after storing to double size, dist == best_dist,
            # resulting to non-terminating loop

            if dist > best_dist + eps*(1 + fabs(best_dist)):
                # Note: this is intentional: we jump in the middle of the cycle,
                #       and continue the cycle from the next k.
                #
                #       This apparently sweeps the different directions more
                #       efficiently. We don't need full accuracy, since we do
                #       a directed search afterwards in any case.
                isimplex = ineigh
                best_dist = dist
                changed = 1

    # We should now be somewhere near the simplex containing the point,
    # locate it with a directed search
    start[0] = isimplex
    return _find_simplex_directed(d, c, x, start, eps, eps_broad)


#------------------------------------------------------------------------------
# Delaunay triangulation interface, for Python
#------------------------------------------------------------------------------

class _QhullUser(object):
    """
    Takes care of basic dealings with the Qhull objects
    """

    _qhull = None

    def __init__(self, qhull, incremental=False):
        self._qhull = None
        try:
            self._update(qhull)
            if incremental:
                # last, to deal with exceptions
                self._qhull = qhull
        finally:
            if qhull is not self._qhull:
                qhull.close()

    def close(self):
        """
        close()

        Finish incremental processing.

        Call this to free resources taken up by Qhull, when using the
        incremental mode. After calling this, adding more points is no
        longer possible.
        """
        if self._qhull is not None:
            self._qhull.close()
            self._qhull = None

    def __del__(self):
        self.close()

    def _update(self, qhull):
        self.points = qhull.get_points()
        self.ndim = self.points.shape[1]
        self.npoints = self.points.shape[0]
        self.points = self.points
        self.min_bound = self.points.min(axis=0)
        self.max_bound = self.points.max(axis=0)

    def add_points(self, points, restart=False):
        """
        add_points(points, restart=False)

        Process a set of additional new points.

        Parameters
        ----------
        points : ndarray
            New points to add. The dimensionality should match that of the
            initial points.
        restart : bool, optional
            Whether to restart processing from scratch, rather than
            adding points incrementally.

        Raises
        ------
        QhullError
            Raised when Qhull encounters an error condition, such as
            geometrical degeneracy when options to resolve are not enabled.

        See Also
        --------
        close

        Notes
        -----
        You need to specify ``incremental=True`` when constructing the
        object to be able to add points incrementally. Incremental addition
        of points is also not possible after `close` has been called.

        """
        if self._qhull is None:
            raise RuntimeError("incremental mode not enabled or already closed")

        if restart:
            points = np.concatenate([self.points, points], axis=0)
            qhull = _Qhull(self._qhull.mode_option, points,
                           options=self._qhull.options,
                           furthest_site=self._qhull.furthest_site,
                           incremental=True)
            try:
                self._update(qhull)
                self._qhull = qhull
            finally:
                if qhull is not self._qhull:
                    qhull.close()
            return

        self._qhull.add_points(points)
        self._update(self._qhull)


class Delaunay(_QhullUser):
    """
    Delaunay(points, furthest_site=False, incremental=False, qhull_options=None)

    Delaunay tesselation in N dimensions.

    .. versionadded:: 0.9

    Parameters
    ----------
    points : ndarray of floats, shape (npoints, ndim)
        Coordinates of points to triangulate
    furthest_site : bool, optional
        Whether to compute a furthest-site Delaunay triangulation.
        Default: False

        .. versionadded:: 0.12.0
    incremental : bool, optional
        Allow adding new points incrementally. This takes up some additional
        resources.
    qhull_options : str, optional
        Additional options to pass to Qhull. See Qhull manual for
        details. Option "Qt" is always enabled.
        Default:"Qbb Qc Qz Qx" for ndim > 4 and "Qbb Qc Qz" otherwise.
        Incremental mode omits "Qz".

        .. versionadded:: 0.12.0

    Attributes
    ----------
    points : ndarray of double, shape (npoints, ndim)
        Coordinates of input points.
    simplices : ndarray of ints, shape (nsimplex, ndim+1)
        Indices of the points forming the simplices in the triangulation.
        For 2-D, the points are oriented counterclockwise.
    neighbors : ndarray of ints, shape (nsimplex, ndim+1)
        Indices of neighbor simplices for each simplex.
        The kth neighbor is opposite to the kth vertex.
        For simplices at the boundary, -1 denotes no neighbor.
    equations : ndarray of double, shape (nsimplex, ndim+2)
        [normal, offset] forming the hyperplane equation of the facet
        on the paraboloid (see [Qhull]_ documentation for more).
    paraboloid_scale, paraboloid_shift : float
        Scale and shift for the extra paraboloid dimension
        (see [Qhull]_ documentation for more).
    transform : ndarray of double, shape (nsimplex, ndim+1, ndim)
        Affine transform from ``x`` to the barycentric coordinates ``c``.
        This is defined by::

            T c = x - r

        At vertex ``j``, ``c_j = 1`` and the other coordinates zero.

        For simplex ``i``, ``transform[i,:ndim,:ndim]`` contains
        inverse of the matrix ``T``, and ``transform[i,ndim,:]``
        contains the vector ``r``.

        If the simplex is degenerate or nearly degenerate, its
        barycentric transform contains NaNs.
    vertex_to_simplex : ndarray of int, shape (npoints,)
        Lookup array, from a vertex, to some simplex which it is a part of.
        If qhull option "Qc" was not specified, the list will contain -1
        for points that are not vertices of the tesselation.
    convex_hull : ndarray of int, shape (nfaces, ndim)
        Vertices of facets forming the convex hull of the point set.
        The array contains the indices of the points belonging to
        the (N-1)-dimensional facets that form the convex hull
        of the triangulation.

        .. note::

           Computing convex hulls via the Delaunay triangulation is
           inefficient and subject to increased numerical instability.
           Use `ConvexHull` instead.
    coplanar : ndarray of int, shape (ncoplanar, 3)
        Indices of coplanar points and the corresponding indices of
        the nearest facet and the nearest vertex.  Coplanar
        points are input points which were *not* included in the
        triangulation due to numerical precision issues.

        If option "Qc" is not specified, this list is not computed.

        .. versionadded:: 0.12.0
    vertices
        Same as `simplices`, but deprecated.
    vertex_neighbor_vertices : tuple of two ndarrays of int; (indices, indptr)
        Neighboring vertices of vertices. The indices of neighboring
        vertices of vertex `k` are ``indptr[indices[k]:indices[k+1]]``.

    Raises
    ------
    QhullError
        Raised when Qhull encounters an error condition, such as
        geometrical degeneracy when options to resolve are not enabled.
    ValueError
        Raised if an incompatible array is given as input.

    Notes
    -----
    The tesselation is computed using the Qhull library [Qhull]_.

    .. note::

       Unless you pass in the Qhull option "QJ", Qhull does not
       guarantee that each input point appears as a vertex in the
       Delaunay triangulation. Omitted points are listed in the
       `coplanar` attribute.

    Do not call the ``add_points`` method from a ``__del__``
    destructor.

    Examples
    --------
    Triangulation of a set of points:

    >>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
    >>> from scipy.spatial import Delaunay
    >>> tri = Delaunay(points)

    We can plot it:

    >>> import matplotlib.pyplot as plt
    >>> plt.triplot(points[:,0], points[:,1], tri.simplices.copy())
    >>> plt.plot(points[:,0], points[:,1], 'o')
    >>> plt.show()

    Point indices and coordinates for the two triangles forming the
    triangulation:

    >>> tri.simplices
    array([[3, 2, 0],
           [3, 1, 0]], dtype=int32)
    >>> points[tri.simplices]
    array([[[ 1. ,  1. ],
            [ 1. ,  0. ],
            [ 0. ,  0. ]],
           [[ 1. ,  1. ],
            [ 0. ,  1.1],
            [ 0. ,  0. ]]])

    Triangle 0 is the only neighbor of triangle 1, and it's opposite to
    vertex 1 of triangle 1:

    >>> tri.neighbors[1]
    array([-1,  0, -1], dtype=int32)
    >>> points[tri.simplices[1,1]]
    array([ 0. ,  1.1])

    We can find out which triangle points are in:

    >>> p = np.array([(0.1, 0.2), (1.5, 0.5)])
    >>> tri.find_simplex(p)
    array([ 1, -1], dtype=int32)

    We can also compute barycentric coordinates in triangle 1 for
    these points:

    >>> b = tri.transform[1,:2].dot(p - tri.transform[1,2])
    >>> np.c_[b, 1 - b.sum(axis=1)]
    array([[ 0.1       ,  0.2       ,  0.7       ],
           [ 1.27272727,  0.27272727, -0.54545455]])

    The coordinates for the first point are all positive, meaning it
    is indeed inside the triangle.

    References
    ----------
    .. [Qhull] http://www.qhull.org/

    """

    def __init__(self, points, furthest_site=False, incremental=False,
                 qhull_options=None):
        if np.ma.is_masked(points):
            raise ValueError('Input points cannot be a masked array')
        points = np.ascontiguousarray(points, dtype=np.double)

        if qhull_options is None:
            if not incremental:
                qhull_options = b"Qbb Qc Qz"
            else:
                qhull_options = b"Qc"
            if points.shape[1] >= 5:
                qhull_options += b" Qx"
        else:
            qhull_options = asbytes(qhull_options)

        # Run qhull
        qhull = _Qhull(b"d", points, qhull_options, required_options=b"Qt",
                       furthest_site=furthest_site, incremental=incremental)
        _QhullUser.__init__(self, qhull, incremental=incremental)

    def _update(self, qhull):
        qhull.triangulate()

        self.paraboloid_scale, self.paraboloid_shift = \
                               qhull.get_paraboloid_shift_scale()

        self.simplices, self.neighbors, self.equations, self.coplanar = \
                       qhull.get_simplex_facet_array()

        self.nsimplex = self.simplices.shape[0]
        self._transform = None
        self._vertex_to_simplex = None
        self._vertex_neighbor_vertices = None

        # Backwards compatibility (Scipy < 0.12.0)
        self.vertices = self.simplices

        _QhullUser._update(self, qhull)

    @property
    def transform(self):
        """
        Affine transform from ``x`` to the barycentric coordinates ``c``.

        :type: ndarray of double, shape (nsimplex, ndim+1, ndim)

        This is defined by::

            T c = x - r

        At vertex ``j``, ``c_j = 1`` and the other coordinates zero.

        For simplex ``i``, ``transform[i,:ndim,:ndim]`` contains
        inverse of the matrix ``T``, and ``transform[i,ndim,:]``
        contains the vector ``r``.
        """
        if self._transform is None:
            raise Exception('deprecated function : lapack dependency inacceptable')
        return self._transform
        

    @property
    @cython.boundscheck(False)
    def vertex_to_simplex(self):
        """
        Lookup array, from a vertex, to some simplex which it is a part of.

        :type: ndarray of int, shape (npoints,)
        """
        cdef int isimplex, k, ivertex, nsimplex, ndim
        cdef np.ndarray[np.npy_int, ndim=2] simplices
        cdef np.ndarray[np.npy_int, ndim=1] arr

        if self._vertex_to_simplex is None:
            self._vertex_to_simplex = np.empty((self.npoints,), dtype=np.intc)
            self._vertex_to_simplex.fill(-1)

            # include coplanar points
            self._vertex_to_simplex[self.coplanar[:,0]] = self.coplanar[:,2]

            # include other points
            arr = self._vertex_to_simplex
            simplices = self.simplices

            coplanar = self.coplanar
            ncoplanar = coplanar.shape[0]

            nsimplex = self.nsimplex
            ndim = self.ndim

            with nogil:
                for isimplex in xrange(nsimplex):
                    for k in xrange(ndim+1):
                        ivertex = simplices[isimplex, k]
                        if arr[ivertex] == -1:
                            arr[ivertex] = isimplex

        return self._vertex_to_simplex

    @property
    @cython.boundscheck(False)
    def vertex_neighbor_vertices(self):
        """
        Neighboring vertices of vertices.

        Tuple of two ndarrays of int: (indices, indptr). The indices of
        neighboring vertices of vertex `k` are
        ``indptr[indices[k]:indices[k+1]]``.

        """
        cdef int i, j, k, m, is_neighbor, is_missing, ndata, idata
        cdef int nsimplex, npoints, ndim
        cdef np.ndarray[np.npy_int, ndim=2] simplices
        cdef setlist.setlist_t sets

        if self._vertex_neighbor_vertices is None:
            ndim = self.ndim
            npoints = self.npoints
            nsimplex = self.nsimplex
            simplices = self.simplices

            setlist.init(&sets, npoints, ndim+1)

            try:
                with nogil:
                    for i in xrange(nsimplex):
                        for j in xrange(ndim+1):
                            for k in xrange(ndim+1):
                                if simplices[i,j] != simplices[i,k]:
                                    if setlist.add(&sets, simplices[i,j], simplices[i,k]):
                                        with gil:
                                            raise MemoryError

                self._vertex_neighbor_vertices = setlist.tocsr(&sets)
            finally:
                setlist.free(&sets)

        return self._vertex_neighbor_vertices

    @property
    @cython.boundscheck(False)
    def convex_hull(self):
        """
        Vertices of facets forming the convex hull of the point set.

        :type: ndarray of int, shape (nfaces, ndim)

        The array contains the indices of the points
        belonging to the (N-1)-dimensional facets that form the convex
        hull of the triangulation.

        .. note::

           Computing convex hulls via the Delaunay triangulation is
           inefficient and subject to increased numerical instability.
           Use `ConvexHull` instead.

        """
        cdef int isimplex, k, j, ndim, nsimplex, m, msize
        cdef object out
        cdef np.ndarray[np.npy_int, ndim=2] arr
        cdef np.ndarray[np.npy_int, ndim=2] neighbors
        cdef np.ndarray[np.npy_int, ndim=2] simplices

        neighbors = self.neighbors
        simplices = self.simplices
        ndim = self.ndim
        nsimplex = self.nsimplex

        msize = 10
        out = np.empty((msize, ndim), dtype=np.intc)
        arr = out

        m = 0
        for isimplex in xrange(nsimplex):
            for k in xrange(ndim+1):
                if neighbors[isimplex,k] == -1:
                    for j in xrange(ndim+1):
                        if j < k:
                            arr[m,j] = simplices[isimplex,j]
                        elif j > k:
                            arr[m,j-1] = simplices[isimplex,j]
                    m += 1

                    if m >= msize:
                        arr = None
                        msize = 2*msize + 1
                        try:
                            out.resize(msize, ndim)
                        except ValueError:
                            # Work around Cython bug on Python 2.4
                            out = np.resize(out, (msize, ndim))
                        arr = out

        arr = None
        try:
            out.resize(m, ndim)
        except ValueError:
            # XXX: work around a Cython bug on Python 2.4
            #      still leaks memory, though
            return np.resize(out, (m, ndim))
        return out

    @cython.boundscheck(False)
    def find_simplex(self, xi, bruteforce=False, tol=None):
        """
        find_simplex(self, xi, bruteforce=False, tol=None)

        Find the simplices containing the given points.

        Parameters
        ----------
        tri : DelaunayInfo
            Delaunay triangulation
        xi : ndarray of double, shape (..., ndim)
            Points to locate
        bruteforce : bool, optional
            Whether to only perform a brute-force search
        tol : float, optional
            Tolerance allowed in the inside-triangle check.
            Default is ``100*eps``.

        Returns
        -------
        i : ndarray of int, same shape as `xi`
            Indices of simplices containing each point.
            Points outside the triangulation get the value -1.

        Notes
        -----
        This uses an algorithm adapted from Qhull's ``qh_findbestfacet``,
        which makes use of the connection between a convex hull and a
        Delaunay triangulation. After finding the simplex closest to
        the point in N+1 dimensions, the algorithm falls back to
        directed search in N dimensions.

        """
        cdef DelaunayInfo_t info
        cdef int isimplex
        cdef double c[NPY_MAXDIMS]
        cdef double eps, eps_broad
        cdef int start
        cdef int k
        cdef np.ndarray[np.double_t, ndim=2] x
        cdef np.ndarray[np.npy_int, ndim=1] out_

        xi = np.asanyarray(xi)

        if xi.shape[-1] != self.ndim:
            raise ValueError("wrong dimensionality in xi")

        xi_shape = xi.shape
        xi = xi.reshape(-1, xi.shape[-1])
        x = np.ascontiguousarray(xi.astype(np.double))

        start = 0

        if tol is None:
            eps = 100 * np.finfo(np.double).eps
        else:
            eps = tol
        eps_broad = np.sqrt(eps)
        out = np.zeros((xi.shape[0],), dtype=np.intc)
        out_ = out
        _get_delaunay_info(&info, self, 1, 0, 0)

        if bruteforce:
            with nogil:
                for k in xrange(x.shape[0]):
                    isimplex = _find_simplex_bruteforce(
                        &info, c,
                        <double*>x.data + info.ndim*k,
                        eps, eps_broad)
                    out_[k] = isimplex
        else:
            with nogil:
                for k in xrange(x.shape[0]):
                    isimplex = _find_simplex(&info, c,
                                             <double*>x.data + info.ndim*k,
                                             &start, eps, eps_broad)
                    out_[k] = isimplex

        return out.reshape(xi_shape[:-1])

    @cython.boundscheck(False)
    def plane_distance(self, xi):
        """
        plane_distance(self, xi)

        Compute hyperplane distances to the point `xi` from all simplices.

        """
        cdef np.ndarray[np.double_t, ndim=2] x
        cdef np.ndarray[np.double_t, ndim=2] out_
        cdef DelaunayInfo_t info
        cdef double z[NPY_MAXDIMS+1]
        cdef int i, j, k

        if xi.shape[-1] != self.ndim:
            raise ValueError("xi has different dimensionality than "
                             "triangulation")

        xi_shape = xi.shape
        xi = xi.reshape(-1, xi.shape[-1])
        x = np.ascontiguousarray(xi.astype(np.double))

        _get_delaunay_info(&info, self, 0, 0, 0)

        out = np.zeros((x.shape[0], info.nsimplex), dtype=np.double)
        out_ = out

        with nogil:
            for i in xrange(x.shape[0]):
                for j in xrange(info.nsimplex):
                    _lift_point(&info, (<double*>x.data) + info.ndim*i, z)
                    out_[i,j] = _distplane(&info, j, z)

        return out.reshape(xi_shape[:-1] + (self.nsimplex,))

    def lift_points(self, x):
        """
        lift_points(self, x)

        Lift points to the Qhull paraboloid.

        """
        z = np.zeros(x.shape[:-1] + (x.shape[-1]+1,), dtype=np.double)
        z[...,:-1] = x
        z[...,-1] = (x**2).sum(axis=-1)
        z[...,-1] *= self.paraboloid_scale
        z[...,-1] += self.paraboloid_shift
        return z


def tsearch(tri, xi):
    """
    tsearch(tri, xi)

    Find simplices containing the given points. This function does the
    same thing as `Delaunay.find_simplex`.

    .. versionadded:: 0.9

    See Also
    --------
    Delaunay.find_simplex

    """
    return tri.find_simplex(xi)


#------------------------------------------------------------------------------
# Delaunay triangulation interface, for low-level C
#------------------------------------------------------------------------------

cdef int _get_delaunay_info(DelaunayInfo_t *info,
                            obj,
                            int compute_transform,
                            int compute_vertex_to_simplex,
                            int compute_vertex_neighbor_vertices) except -1:
#     cdef np.ndarray[np.double_t, ndim=3] transform
    cdef np.ndarray[np.npy_int, ndim=1] vertex_to_simplex
    cdef np.ndarray[np.npy_int, ndim=1] vn_indices, vn_indptr
    cdef np.ndarray[np.double_t, ndim=2] points = obj.points
    cdef np.ndarray[np.npy_int, ndim=2] simplices = obj.simplices
    cdef np.ndarray[np.npy_int, ndim=2] neighbors = obj.neighbors
    cdef np.ndarray[np.double_t, ndim=2] equations = obj.equations
    cdef np.ndarray[np.double_t, ndim=1] min_bound = obj.min_bound
    cdef np.ndarray[np.double_t, ndim=1] max_bound = obj.max_bound

    info.ndim = points.shape[1]
    info.npoints = points.shape[0]
    info.nsimplex = simplices.shape[0]
    info.points = <double*>points.data
    info.simplices = <int*>simplices.data
    info.neighbors = <int*>neighbors.data
    info.equations = <double*>equations.data
    info.paraboloid_scale = obj.paraboloid_scale
    info.paraboloid_shift = obj.paraboloid_shift
    if compute_transform:
        print('Transformation impossible : Function inactivated')
        #transform = obj.transform
        #info.transform = <double*>transform.data
    else:
        info.transform = NULL
    if compute_vertex_to_simplex:
        vertex_to_simplex = obj.vertex_to_simplex
        info.vertex_to_simplex = <int*>vertex_to_simplex.data
    else:
        info.vertex_to_simplex = NULL
    if compute_vertex_neighbor_vertices:
        vn_indices, vn_indptr = obj.vertex_neighbor_vertices
        info.vertex_neighbors_indices = <int*>vn_indices.data
        info.vertex_neighbors_indptr = <int*>vn_indptr.data
    else:
        info.vertex_neighbors_indices = NULL
        info.vertex_neighbors_indptr = NULL
    info.min_bound = <double*>min_bound.data
    info.max_bound = <double*>max_bound.data

    return 0


#------------------------------------------------------------------------------
# Convex hulls
#------------------------------------------------------------------------------

class ConvexHull(_QhullUser):
    """
    ConvexHull(points, incremental=False, qhull_options=None)

    Convex hulls in N dimensions.

    .. versionadded:: 0.12.0

    Parameters
    ----------
    points : ndarray of floats, shape (npoints, ndim)
        Coordinates of points to construct a convex hull from
    incremental : bool, optional
        Allow adding new points incrementally. This takes up some additional
        resources.
    qhull_options : str, optional
        Additional options to pass to Qhull. See Qhull manual
        for details. (Default: "Qx" for ndim > 4 and "" otherwise)
        Option "Qt" is always enabled.

    Attributes
    ----------
    points : ndarray of double, shape (npoints, ndim)
        Coordinates of input points.
    vertices : ndarray of ints, shape (nvertices,)
        Indices of points forming the vertices of the convex hull.
        For 2-D convex hulls, the vertices are in counterclockwise order.
        For other dimensions, they are in input order.
    simplices : ndarray of ints, shape (nfacet, ndim)
        Indices of points forming the simplical facets of the convex hull.
    neighbors : ndarray of ints, shape (nfacet, ndim)
        Indices of neighbor facets for each facet.
        The kth neighbor is opposite to the kth vertex.
        -1 denotes no neighbor.
    equations : ndarray of double, shape (nfacet, ndim+1)
        [normal, offset] forming the hyperplane equation of the facet
        (see [Qhull]_ documentation for more).
    coplanar : ndarray of int, shape (ncoplanar, 3)
        Indices of coplanar points and the corresponding indices of
        the nearest facets and nearest vertex indices.  Coplanar
        points are input points which were *not* included in the
        triangulation due to numerical precision issues.

        If option "Qc" is not specified, this list is not computed.

    Raises
    ------
    QhullError
        Raised when Qhull encounters an error condition, such as
        geometrical degeneracy when options to resolve are not enabled.
    ValueError
        Raised if an incompatible array is given as input.

    Notes
    -----
    The convex hull is computed using the Qhull libary [Qhull]_.

    Do not call the ``add_points`` method from a ``__del__``
    destructor.

    Examples
    --------

    Convex hull of a random set of points:

    >>> from scipy.spatial import ConvexHull
    >>> points = np.random.rand(30, 2)   # 30 random points in 2-D
    >>> hull = ConvexHull(points)

    Plot it:

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(points[:,0], points[:,1], 'o')
    >>> for simplex in hull.simplices:
    >>>     plt.plot(points[simplex,0], points[simplex,1], 'k-')

    We could also have directly used the vertices of the hull, which
    for 2-D are guaranteed to be in counterclockwise order:

    >>> plt.plot(points[hull.vertices,0], points[hull.vertices,1], 'r--', lw=2)
    >>> plt.plot(points[hull.vertices[0],0], points[hull.vertices[0],1], 'ro')
    >>> plt.show()

    References
    ----------
    .. [Qhull] http://www.qhull.org/

    """

    def __init__(self, points, incremental=False, qhull_options=None):
        if np.ma.is_masked(points):
            raise ValueError('Input points cannot be a masked array')
        points = np.ascontiguousarray(points, dtype=np.double)

        if qhull_options is None:
            qhull_options = b""
            if points.shape[1] >= 5:
                qhull_options += b"Qx"
        else:
            qhull_options = asbytes(qhull_options)

        # Run qhull
        qhull = _Qhull(b"i", points, qhull_options, required_options=b"Qt",
                       incremental=incremental)
        _QhullUser.__init__(self, qhull, incremental=incremental)

    def _update(self, qhull):
        qhull.triangulate()

        self.simplices, self.neighbors, self.equations, self.coplanar = \
                       qhull.get_simplex_facet_array()

        if qhull.ndim == 2:
            self._vertices = qhull.get_extremes_2d()
        else:
            self._vertices = None

        self.nsimplex = self.simplices.shape[0]

        _QhullUser._update(self, qhull)

    @property
    def vertices(self):
        if self._vertices is None:
            self._vertices = np.unique(self.simplices)
        return self._vertices


#------------------------------------------------------------------------------
# Voronoi diagrams
#------------------------------------------------------------------------------

class Voronoi(_QhullUser):
    """
    Voronoi(points, furthest_site=False, incremental=False, qhull_options=None)

    Voronoi diagrams in N dimensions.

    .. versionadded:: 0.12.0

    Parameters
    ----------
    points : ndarray of floats, shape (npoints, ndim)
        Coordinates of points to construct a convex hull from
    furthest_site : bool, optional
        Whether to compute a furthest-site Voronoi diagram. Default: False
    incremental : bool, optional
        Allow adding new points incrementally. This takes up some additional
        resources.
    qhull_options : str, optional
        Additional options to pass to Qhull. See Qhull manual
        for details. (Default: "Qbb Qc Qz Qx" for ndim > 4 and
        "Qbb Qc Qz" otherwise. Incremental mode omits "Qz".)

    Attributes
    ----------
    points : ndarray of double, shape (npoints, ndim)
        Coordinates of input points.
    vertices : ndarray of double, shape (nvertices, ndim)
        Coordinates of the Voronoi vertices.
    ridge_points : ndarray of ints, shape (nridges, 2)
        Indices of the points between which each Voronoi ridge lies.
    ridge_vertices : list of list of ints, shape (nridges, *)
        Indices of the Voronoi vertices forming each Voronoi ridge.
    regions : list of list of ints, shape (nregions, *)
        Indices of the Voronoi vertices forming each Voronoi region.
        -1 indicates vertex outside the Voronoi diagram.
    point_region : list of ints, shape (npoints)
        Index of the Voronoi region for each input point.
        If qhull option "Qc" was not specified, the list will contain -1
        for points that are not associated with a Voronoi region.

    Raises
    ------
    QhullError
        Raised when Qhull encounters an error condition, such as
        geometrical degeneracy when options to resolve are not enabled.
    ValueError
        Raised if an incompatible array is given as input.

    Notes
    -----
    The Voronoi diagram is computed using the Qhull libary [Qhull]_.

    Do not call the ``add_points`` method from a ``__del__``
    destructor.

    Examples
    --------
    Voronoi diagram for a set of point:

    >>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],
    ...                    [2, 0], [2, 1], [2, 2]])
    >>> from scipy.spatial import Voronoi, voronoi_plot_2d
    >>> vor = Voronoi(points)

    Plot it:

    >>> import matplotlib.pyplot as plt
    >>> voronoi_plot_2d(vor)
    >>> plt.show()

    The Voronoi vertices:

    >>> vor.vertices
    array([[ 0.5,  0.5],
           [ 1.5,  0.5],
           [ 0.5,  1.5],
           [ 1.5,  1.5]])

    There is a single finite Voronoi region, and four finite Voronoi
    ridges:

    >>> vor.regions
    [[], [-1, 0], [-1, 1], [1, -1, 0], [3, -1, 2], [-1, 3], [-1, 2], [3, 2, 0, 1], [2, -1, 0], [3, -1, 1]]
    >>> vor.ridge_vertices
    [[-1, 0], [-1, 0], [-1, 1], [-1, 1], [0, 1], [-1, 3], [-1, 2], [2, 3], [-1, 3], [-1, 2], [0, 2], [1, 3]]

    The ridges are perpendicular between lines drawn between the following
    input points:

    >>> vor.ridge_points
    array([[0, 1],
           [0, 3],
           [6, 3],
           [6, 7],
           [3, 4],
           [5, 8],
           [5, 2],
           [5, 4],
           [8, 7],
           [2, 1],
           [4, 1],
           [4, 7]], dtype=int32)

    References
    ----------
    .. [Qhull] http://www.qhull.org/

    """
    def __init__(self, points, furthest_site=False, incremental=False,
                 qhull_options=None):
        if np.ma.is_masked(points):
            raise ValueError('Input points cannot be a masked array')
        points = np.ascontiguousarray(points, dtype=np.double)

        if qhull_options is None:
            if not incremental:
                qhull_options = b"Qbb Qc Qz"
            else:
                qhull_options = b"Qc"
            if points.shape[1] >= 5:
                qhull_options += b" Qx"
        else:
            qhull_options = asbytes(qhull_options)

        # Run qhull
        qhull = _Qhull(b"v", points, qhull_options, furthest_site=furthest_site,
                       incremental=incremental)
        _QhullUser.__init__(self, qhull, incremental=incremental)

    def _update(self, qhull):
        self.vertices, self.ridge_points, self.ridge_vertices, \
                       self.regions, self.point_region = \
                       qhull.get_voronoi_diagram()

        self._ridge_dict = None

        _QhullUser._update(self, qhull)

    @property
    def ridge_dict(self):
        if self._ridge_dict is None:
            self._ridge_dict = dict(zip(map(tuple, self.ridge_points.tolist()),
                                        self.ridge_vertices))
        return self._ridge_dict