CurrentCorrelationFunction.py 12.1 KB
Newer Older
1 2 3 4 5
#MDANSE : Molecular Dynamics Analysis for Neutron Scattering Experiments
#------------------------------------------------------------------------------------------
#Copyright (C)
#2015- Eric C. Pellegrini Institut Laue-Langevin
#BP 156
6 7
#71 avenue des Martyrs
#38000 Grenoble Cedex 9
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#France
#pellegrini[at]ill.fr
#goret[at]ill.fr
#aoun[at]ill.fr
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU Lesser General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#Lesser General Public License for more details.
#
#You should have received a copy of the GNU Lesser General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

''' 
Created on Mar 30, 2015

30
:author: Eric C. Pellegrini
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
'''

import collections
import itertools

import numpy

from MDANSE import ELEMENTS
from MDANSE.Framework.Jobs.IJob import IJob
from MDANSE.Mathematics.Arithmetic import weight
from MDANSE.Mathematics.Signal import correlation, normalize, get_spectrum

class CurrentCorrelationFunction(IJob):
    """
    Computes the current correlation function for a set of atoms.
46 47
    The transverse and longitudinal current correlation functions are typically used to study the propagation of excitations in disordered systems.
    The longitudinal current is directly related to density fluctuations and the transverse current is linked to propagating 'shear modes'.
48
    
49
    For more information, see e.g. 'J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (3rd ed., Elsevier), chapter 7.4: Correlations
50 51 52 53 54 55 56 57 58
    in space and time)' 
    """

    type = 'ccf'
    
    label = "Current Correlation Function"

    category = ('Scattering',)
    
59
    ancestor = ["mmtk_trajectory"]
60

61 62 63
    settings = collections.OrderedDict()
    settings['trajectory'] = ('mmtk_trajectory',{})
    settings['frames'] = ('frames', {'dependencies':{'trajectory':'trajectory'}})
64
    settings['instrument_resolution'] = ('instrument_resolution',{'dependencies':{'trajectory':'trajectory','frames' : 'frames'}})
65 66 67 68
    settings['q_vectors'] = ('q_vectors',{'dependencies':{'trajectory':'trajectory'}})
    settings['atom_selection'] = ('atom_selection',{'dependencies':{'trajectory':'trajectory'}})
    settings['normalize'] = ('boolean', {'default':False})
    settings['transmutated_atoms'] = ('atom_transmutation',{'dependencies':{'trajectory':'trajectory',
69
                                                                                 'atom_selection':'atom_selection'}})
70 71 72
    settings['weights'] = ('weights', {'default':'b_coherent'})
    settings['output_files'] = ('output_files', {'formats':["netcdf","ascii"]})
    settings['running_mode'] = ('running_mode',{})
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

    def initialize(self):
        """
        Initialize the input parameters and analysis self variables
        """

        self.numberOfSteps = self.configuration['q_vectors']['n_shells']

        nQShells = self.configuration["q_vectors"]["n_shells"]
        
        self._nFrames = self.configuration['frames']['number']
        
        self._instrResolution = self.configuration["instrument_resolution"]
        
        self._nFrequencies = self._instrResolution['n_frequencies']
                
        self._outputData.add("q","line", numpy.array(self.configuration["q_vectors"]["shells"]), units="inv_nm") 

        self._outputData.add("times","line", self.configuration['frames']['time'], units='ps')

        self._outputData.add("frequency","line", self._instrResolution["frequencies"],units='THz')
                                
        self._elementsPairs = sorted(itertools.combinations_with_replacement(self.configuration['atom_selection']['contents'].keys(),2))

        for pair in self._elementsPairs:
            self._outputData.add("j(q,t)_long_%s%s"  % pair,"surface", (nQShells,self._nFrames), axis="q|times", units="au")                                                 
            self._outputData.add("j(q,t)_trans_%s%s" % pair,"surface", (nQShells,self._nFrames), axis="q|times", units="au")                                                 
            self._outputData.add("J(q,f)_long_%s%s"  % pair,"surface", (nQShells,self._nFrequencies), axis="q|frequency", units="au") 
            self._outputData.add("J(q,f)_trans_%s%s" % pair,"surface", (nQShells,self._nFrequencies), axis="q|frequency", units="au") 

        self._outputData.add("j(q,t)_long_total","surface", (nQShells,self._nFrames), axis="q|times"    , units="au")                                                 
        self._outputData.add("J(q,f)_long_total","surface", (nQShells,self._nFrequencies), axis="q|frequency", units="au") 
        self._outputData.add("j(q,t)_trans_total","surface", (nQShells,self._nFrames), axis="q|times"    , units="au")                                                 
        self._outputData.add("J(q,f)_trans_total","surface", (nQShells,self._nFrequencies), axis="q|frequency", units="au") 
         
    def run_step(self, index):
        """
        Runs a single step of the job.\n
 
        :Parameters:
            #. index (int): The index of the step.
        :Returns:
            #. index (int): The index of the step. 
            #. rho (numpy.array): The exponential part of I(q,t)
        """
                
        shell = self.configuration["q_vectors"]["shells"][index]
        
        if not shell in self.configuration["q_vectors"]["value"]:
            return index, None
            
        else:
            
            traj = self.configuration['trajectory']['instance']
            
            qVectors = self.configuration["q_vectors"]["value"][shell]["q_vectors"]
            
            qVectors = traj.universe._boxToRealPointArray(qVectors.T)
                                     
            qVectors = qVectors.T
            
            nQVectors = qVectors.shape[1]
            
            rho = {}
            rho_loop = {}
            rhoLong = {}
            rhoTrans = {}
            rhoLong_loop = {}
            rhoTrans_loop = {}
            for element in self.configuration['atom_selection']['contents'].keys():
                rho[element] = numpy.zeros((self._nFrames, 3, nQVectors), dtype = numpy.complex64)
                rho_loop[element] = numpy.zeros((self._nFrames, 3, nQVectors), dtype = numpy.complex64)
                rhoLong_loop[element] = numpy.zeros((self._nFrames, 3, nQVectors), dtype = numpy.complex64)
                rhoTrans_loop[element] = numpy.zeros((self._nFrames, 3, nQVectors), dtype = numpy.complex64)

            # loop over the trajectory time steps
            for i, frame in enumerate(self.configuration['frames']['value']):
                conf = traj.configuration[frame]
                vel = traj.velocities[frame]
                
                for element,idxs in self.configuration['atom_selection']['contents'].items():
                    selectedCoordinates = conf.array[idxs,:]
                    selectedVelocities =  vel.array[idxs,:]
                    selectedVelocities = numpy.transpose(selectedVelocities)[:,:,numpy.newaxis]
                    tmp = numpy.exp(1j*numpy.dot(selectedCoordinates, qVectors))[numpy.newaxis,:,:]
                    rho[element][i,:,:] = numpy.add.reduce(selectedVelocities*tmp,1)

            Q2 = numpy.sum(qVectors**2,axis=0)
161
            
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            for element in self.configuration['atom_selection']['contents'].keys():
                qj = numpy.sum(rho[element]*qVectors,axis=1)
                rhoLong[element] = (qj[:,numpy.newaxis,:]*qVectors[numpy.newaxis,:,:])/Q2
                rhoTrans[element] = rho[element] - rhoLong[element]

            return index, (rhoLong, rhoTrans)
    
    def combine(self, index, x):
        """
        Combines returned results of run_step.\n
        :Parameters:
            #. index (int): The index of the step.\n
            #. x (any): The returned result(s) of run_step
        """
        
        if x is None:
            return
        
        jLong, jTrans = x
        
        for pair in self._elementsPairs:
            
            corrLong = numpy.zeros((self._nFrames,),dtype=numpy.float64)
            corrTrans = numpy.zeros((self._nFrames,),dtype=numpy.float64)
            
            for i in range(3):
188 189
                corrLong += correlation(jLong[pair[0]][:,i,:],jLong[pair[1]][:,i,:], axis=0, average=1)
                corrTrans += correlation(jTrans[pair[0]][:,i,:],jTrans[pair[1]][:,i,:], axis=0, average=1)
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                            
            self._outputData["j(q,t)_long_%s%s" % pair][index,:] += corrLong
            self._outputData["j(q,t)_trans_%s%s" % pair][index,:] += corrTrans
                                        
    def finalize(self):
        """
        Finalizes the calculations (e.g. averaging the total term, output files creations ...)
        """
                
        for pair in self._elementsPairs:
            ni = self.configuration['atom_selection']['n_atoms_per_element'][pair[0]]
            nj = self.configuration['atom_selection']['n_atoms_per_element'][pair[1]]
            self._outputData["j(q,t)_long_%s%s" % pair][:] /= ni*nj
            self._outputData["j(q,t)_trans_%s%s" % pair][:] /= ni*nj
            self._outputData["J(q,f)_long_%s%s" % pair][:] = get_spectrum(self._outputData["j(q,t)_long_%s%s" % pair],
                                                                          self.configuration["instrument_resolution"]["time_window"],
                                                                          self.configuration["instrument_resolution"]["time_step"],
                                                                          axis=1)        
            self._outputData["J(q,f)_trans_%s%s" % pair][:] = get_spectrum(self._outputData["j(q,t)_trans_%s%s" % pair],
                                                                           self.configuration["instrument_resolution"]["time_window"],
                                                                           self.configuration["instrument_resolution"]["time_step"],
                                                                           axis=1)        

        if self.configuration['normalize']["value"]:
            for pair in self._elementsPairs:
                self._outputData["j(q,t)_long_%s%s" % pair] = normalize(self._outputData["j(q,t)_long_%s%s" % pair],axis=1)
                self._outputData["j(q,t)_trans_%s%s" % pair] = normalize(self._outputData["j(q,t)_trans_%s%s" % pair],axis=1)

        props = dict([[k,ELEMENTS[k,self.configuration["weights"]["property"]]] for k in self.configuration['atom_selection']['n_atoms_per_element'].keys()])

        jqtLongTotal = weight(props,self._outputData,self.configuration['atom_selection']['n_atoms_per_element'],2,"j(q,t)_long_%s%s")
        self._outputData["j(q,t)_long_total"][:] = jqtLongTotal

        jqtTransTotal = weight(props,self._outputData,self.configuration['atom_selection']['n_atoms_per_element'],2,"j(q,t)_trans_%s%s")
        self._outputData["j(q,t)_trans_total"][:] = jqtTransTotal
        
        sqfLongTotal = weight(props,
                              self._outputData,
                              self.configuration['atom_selection']['n_atoms_per_element'],
                              2,
                              "J(q,f)_long_%s%s")
        self._outputData["J(q,f)_long_total"][:] = sqfLongTotal

        sqfTransTotal = weight(props,self._outputData,self.configuration['atom_selection']['n_atoms_per_element'],2,"J(q,f)_trans_%s%s")
        self._outputData["J(q,f)_trans_total"][:] = sqfTransTotal
    
236
        self._outputData.write(self.configuration['output_files']['root'], self.configuration['output_files']['formats'], self._info)
237 238
        
        self.configuration['trajectory']['instance'].close()