AtomSelectionConfigurator.py 6.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#MDANSE : Molecular Dynamics Analysis for Neutron Scattering Experiments
#------------------------------------------------------------------------------------------
#Copyright (C)
#2015- Eric C. Pellegrini Institut Laue-Langevin
#BP 156
#6, rue Jules Horowitz
#38042 Grenoble Cedex 9
#France
#pellegrini[at]ill.fr
#goret[at]ill.fr
#aoun[at]ill.fr
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU Lesser General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#Lesser General Public License for more details.
#
#You should have received a copy of the GNU Lesser General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

''' 
Created on Mar 30, 2015

@author: pellegrini
'''

import collections
import operator

import numpy

38
from MDANSE.Framework.UserDefinitions.IUserDefinition import UD_STORE
39
from MDANSE.Framework.Configurators.IConfigurator import IConfigurator, ConfiguratorError
eric pellegrini's avatar
test    
eric pellegrini committed
40
from MDANSE.Framework.AtomSelectionParser import AtomSelectionParser
41

42
# The granularities at which the selection will be performed
43
44
45
46
47
48
49
50
LEVELS = collections.OrderedDict()
LEVELS["atom"]     = {"atom" : 0, "atomcluster" : 0, "molecule" : 0, "nucleotidechain" : 0, "peptidechain" : 0, "protein" : 0}
LEVELS["group"]    = {"atom" : 0, "atomcluster" : 1, "molecule" : 1, "nucleotidechain" : 1, "peptidechain" : 1, "protein" : 1}
LEVELS["residue"]  = {"atom" : 0, "atomcluster" : 1, "molecule" : 1, "nucleotidechain" : 2, "peptidechain" : 2, "protein" : 2}
LEVELS["chain"]    = {"atom" : 0, "atomcluster" : 1, "molecule" : 1, "nucleotidechain" : 3, "peptidechain" : 3, "protein" : 3}
LEVELS["molecule"] = {"atom" : 0, "atomcluster" : 1, "molecule" : 1, "nucleotidechain" : 3, "peptidechain" : 3, "protein" : 4}

class AtomSelectionConfigurator(IConfigurator):    
51
52
53
54
    '''
    This configurator allows the selection of a specific set of atoms on which the analysis will be performed.

    Without any selection, all the atoms stored into the trajectory file will be selected.
55
    To Build an atom selection you have to :
56
57
58
    * Create a workspace based on a mmtk_trajectory data
    * drag a molecular viewer on it
    * drag into the Molecular Viewer his "Atom selection" plugin
59
    '''
60
61
62
63
64
65
66
67

    type = 'atom_selection'
    
    _default = "all"
                    
    def configure(self, configuration, value):
                          
        trajConfig = configuration[self._dependencies['trajectory']]
68
                
69
70
71
72
73
        if not isinstance(value,basestring):
            raise ConfiguratorError("invalid type for atom selection. Must be a string", self)
        
        self["value"] = value
        
74
        ud = UD_STORE[trajConfig["basename"],"atom_selection",value]        
75
76
        if ud is not None:
            self.update(ud)
77
        else:
eric pellegrini's avatar
test    
eric pellegrini committed
78
            parser = AtomSelectionParser(trajConfig["instance"])
79
80
            self["indexes"] = parser.parse(value)
            self["expression"] = value
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

        self["n_selected_atoms"] = len(self["indexes"])
        atoms = sorted(trajConfig["universe"].atomList(), key = operator.attrgetter('index'))
        selectedAtoms = [atoms[idx] for idx in self["indexes"]]
        self["elements"] = [[at.symbol] for at in selectedAtoms]

        if self._dependencies.has_key("grouping_level"):
            self.group(selectedAtoms, configuration[self._dependencies['grouping_level']]['value'])
        else:
            self.group(selectedAtoms)
                                 
        self.set_contents()
            
    @staticmethod                                                                                                                        
    def find_parent(atom, level):
        
        for _ in range(level):
            atom = atom.parent
            
        return atom
    
    def group(self, selectedAtoms, level="atom"):
                        
        level = level.strip().lower()
                
        groups = collections.OrderedDict()
        
        for i, idx in enumerate(self["indexes"]):
            at = selectedAtoms[i]
            lvl = LEVELS[level][at.topLevelChemicalObject().__class__.__name__.lower()]
            parent = self.find_parent(at,lvl)        
            groups.setdefault(parent,[]).append(idx)
        
        self["groups"] = groups.values()
            
        self["n_groups"] = len(self["groups"])
        
        if level != "atom":
            self["elements"] = [["dummy"]]*self["n_groups"]
                                        
        self["level"] = level
                
        self.set_contents()
                        
    def set_contents(self):
eric pellegrini's avatar
test    
eric pellegrini committed
126
                
127
128
129
130
131
132
133
134
135
136
137
138
        self["contents"] = collections.OrderedDict()
        self['index_to_symbol'] = collections.OrderedDict()
        for i, group in enumerate(self["elements"]):
            for j, el in enumerate(group):
                self["contents"].setdefault(el,[]).append(self["groups"][i][j])
                self['index_to_symbol'][self["groups"][i][j]] = el
                 
        for k,v in self["contents"].items():
            self["contents"][k] = numpy.array(v)
            
        self["n_atoms_per_element"] = dict([(k,len(v)) for k,v in self["contents"].items()])              
        self['n_selected_elements'] = len(self["contents"])
eric pellegrini's avatar
test    
eric pellegrini committed
139
                        
140
141
142
143
144
145
146
147
148
    def get_information(self):
        
        info = []
        info.append("Number of selected atoms:%d\n" % self["n_selected_atoms"])
        info.append("Level of selection:%s\n" % self["level"])
        info.append("Number of selected groups:%d\n" % self["n_groups"])
        info.append("Selected elements:%s\n" % self["contents"].keys())
        
        return "".join(info)