AtomSelectionConfigurator.py 7.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#MDANSE : Molecular Dynamics Analysis for Neutron Scattering Experiments
#------------------------------------------------------------------------------------------
#Copyright (C)
#2015- Eric C. Pellegrini Institut Laue-Langevin
#BP 156
#6, rue Jules Horowitz
#38042 Grenoble Cedex 9
#France
#pellegrini[at]ill.fr
#goret[at]ill.fr
#aoun[at]ill.fr
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU Lesser General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#Lesser General Public License for more details.
#
#You should have received a copy of the GNU Lesser General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

''' 
Created on Mar 30, 2015

30
@author: Eric C. Pellegrini
31
32
33
34
35
36
37
'''

import collections
import operator

import numpy

38
from MDANSE.Framework.UserDefinitionsStore import UD_STORE, UserDefinitionsStoreError
39
from MDANSE.Framework.Configurators.IConfigurator import IConfigurator, ConfiguratorError
eric pellegrini's avatar
test    
eric pellegrini committed
40
from MDANSE.Framework.AtomSelectionParser import AtomSelectionParser
41

42
# The granularities at which the selection will be performed
43
44
45
46
47
48
49
50
LEVELS = collections.OrderedDict()
LEVELS["atom"]     = {"atom" : 0, "atomcluster" : 0, "molecule" : 0, "nucleotidechain" : 0, "peptidechain" : 0, "protein" : 0}
LEVELS["group"]    = {"atom" : 0, "atomcluster" : 1, "molecule" : 1, "nucleotidechain" : 1, "peptidechain" : 1, "protein" : 1}
LEVELS["residue"]  = {"atom" : 0, "atomcluster" : 1, "molecule" : 1, "nucleotidechain" : 2, "peptidechain" : 2, "protein" : 2}
LEVELS["chain"]    = {"atom" : 0, "atomcluster" : 1, "molecule" : 1, "nucleotidechain" : 3, "peptidechain" : 3, "protein" : 3}
LEVELS["molecule"] = {"atom" : 0, "atomcluster" : 1, "molecule" : 1, "nucleotidechain" : 3, "peptidechain" : 3, "protein" : 4}

class AtomSelectionConfigurator(IConfigurator):    
51
52
53
54
    '''
    This configurator allows the selection of a specific set of atoms on which the analysis will be performed.

    Without any selection, all the atoms stored into the trajectory file will be selected.
55
    
56
57
58
59
60
    To Build an atom selection from the GUI you have to:
    
    * Create a workspace based on a MMTK trajectory data
    * Drag a molecular viewer on it
    * Drag into the Molecular Viewer the Atom selection plugin
61
    
62
    :note: this configurator depends on 'trajectory' and 'grouping_level' configurators to be configured
63
    '''
64
65
66
67
68
69

    type = 'atom_selection'
    
    _default = "all"
                    
    def configure(self, configuration, value):
70
        '''
71
72
73
        Configure an input value. 
        
        The value must be a string that can be either an atom selection string or a valid user 
74
75
76
77
78
79
80
        definition.
        
        :param configuration: the current configuration
        :type configuration: a MDANSE.Framework.Configurable.Configurable object
        :param value: the input value
        :type value: str
        '''
81
82
                          
        trajConfig = configuration[self._dependencies['trajectory']]
eric pellegrini's avatar
eric pellegrini committed
83
84
85
86
        
        if value is None:
            value = 'all'
        elif not isinstance(value,basestring):
87
88
89
90
            raise ConfiguratorError("invalid type for atom selection. Must be a string", self)
        
        self["value"] = value
        
91
92
93
94
        if UD_STORE.has_definition(trajConfig["basename"],"atom_selection",value):
            ud = UD_STORE.get_definition(trajConfig["basename"],"atom_selection",value)
            self.update(ud)
        else:        
95
            parser = AtomSelectionParser(trajConfig["instance"].universe)
96
97
            self["indexes"] = parser.parse(value)
            self["expression"] = value
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

        self["n_selected_atoms"] = len(self["indexes"])
        atoms = sorted(trajConfig["universe"].atomList(), key = operator.attrgetter('index'))
        selectedAtoms = [atoms[idx] for idx in self["indexes"]]
        self["elements"] = [[at.symbol] for at in selectedAtoms]

        if self._dependencies.has_key("grouping_level"):
            self.group(selectedAtoms, configuration[self._dependencies['grouping_level']]['value'])
        else:
            self.group(selectedAtoms)
                                 
        self.set_contents()
            
    @staticmethod                                                                                                                        
    def find_parent(atom, level):
113
114
115
116
117
118
119
120
121
122
123
        '''
        Retrieve recursively the parent of a given MMTK atom at a given level.
        For example, a level of 1 will return the direct parent of the atom. 
        
        :note: this is a static method
        
        :param atom: the atom for which the parent is searched for
        :type atom: MMTK.Atom object
        :param level: the level of the parent
        :type level: int
        '''
124
125
126
127
128
129
        
        for _ in range(level):
            atom = atom.parent
            
        return atom
    
130
131
132
133
134
135
136
137
138
139
140
    def group(self, atoms, level="atom"):
        '''
        Group the selected atoms according to a given granularity and update
        the configurator with the grouping results.
        
        :param atoms: the atoms for 
        :type atoms: list of MMTK.Atom
        :param level: the level of granularity at which the atoms should be grouped
        :type level: str
        '''
                                        
141
142
        groups = collections.OrderedDict()
        
143
        for at in atoms:
144
145
            lvl = LEVELS[level][at.topLevelChemicalObject().__class__.__name__.lower()]
            parent = self.find_parent(at,lvl)        
146
            groups.setdefault(parent,[]).append(at.index)
147
148
149
150
151
152
153
154
155
156
157
158
159
        
        self["groups"] = groups.values()
            
        self["n_groups"] = len(self["groups"])
        
        if level != "atom":
            self["elements"] = [["dummy"]]*self["n_groups"]
                                        
        self["level"] = level
                
        self.set_contents()
                        
    def set_contents(self):
160
161
162
163
        '''
        Sets the contents of the atom selection.
        '''
                    
164
165
166
167
168
169
170
171
        self["contents"] = collections.OrderedDict()
        self['index_to_symbol'] = collections.OrderedDict()
        for i, group in enumerate(self["elements"]):
            for j, el in enumerate(group):
                self["contents"].setdefault(el,[]).append(self["groups"][i][j])
                self['index_to_symbol'][self["groups"][i][j]] = el
                 
        for k,v in self["contents"].items():
172
            self["contents"][k] = numpy.array(v,dtype=numpy.int32)
173
174
175
            
        self["n_atoms_per_element"] = dict([(k,len(v)) for k,v in self["contents"].items()])              
        self['n_selected_elements'] = len(self["contents"])
eric pellegrini's avatar
test    
eric pellegrini committed
176
                        
177
    def get_information(self):
178
        '''
179
        Returns some informations the atom selection.
180
        
181
        :return: the information about the atom selection.
182
183
        :rtype: str
        '''
184
185
186

        if not self.has_key("n_selected_atoms"):
            return "No configured yet"
187
188
        
        info = []
189
190
191
192
        info.append("Number of selected atoms:%d" % self["n_selected_atoms"])
        info.append("Level of selection:%s" % self["level"])
        info.append("Number of selected groups:%d" % self["n_groups"])
        info.append("Selected elements:%s" % self["contents"].keys())
193
        
194
        return "\n".join(info)