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Description

This note describes the theoretical background of the analyses inMDANSE.MDANSE (Molecular
Dynamics Analysis for Neutron Scattering Experiments) is a python application for analyzing
molecular dynamics simulation data.
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1 Dynamics Analyses

The following analyses are described:

• Mean-Square Displacement

• Root Mean-Square Displacement

• Radius Of Gyration

• Velocity AutoCorrelation Function

• Density Of States

• Global Motion Trajectory

• Center Of Mass Trajectory

• Rigid-Body Trajectory

• Center Of Mass Trajectory

1.1 Mean-Square Displacement

Theory and implementation

Molecules in liquids and gases do not stay in the same place, but move constantly. This
process is called diffusion and it happens quite naturally in fluids at equilibrium. During
this process, the motion of an individual molecule does not follow a simple path [48]. As it
travels, the molecule undergoes some collisions with other molecules which prevent it from
following a straight line. If the path is examined in close detail, it will be seen to be a good
approximation to a random walk. Mathematically, a random walk is a series of steps where
each step is taken in a completely random direction from the one before. This kind of path
was famously analysed by Albert Einstein in a study of Brownian motion. He showed that the
Mean-Square Displacement (MSD) of a particle following a random walk is proportional to the
time elapsed. This relationship can be written as

< r2 >= 6Dt+ C (1)

where < r2 > is the MSD and t is the time. D and C are constants. The constant D defines
the so-called diffusion coefficient.

The figure 1 shows an example of a MSD analysis performed on a waterbox of 768 water
molecules.

To get the diffusion coefficient out of this plot, the slope of the linear part of the plot should
be calculated.

Defining,
dα(t, t0)

.
= Rα(t0 + t)−Rα(t0). (2)

the MSD of particle α can be defined as:

∆2
α(t) =

〈

d2
α(t, t0)

〉

t0
(3)

where Rα(t0) and Rα(t0 + t) are respectively the position of particle α at times t0 and t0 + t.
One can introduce a MSD with respect to a given axis n:

∆2
α(t, t0;n)

.
=
〈

d2α(t, τ ;n)
〉

t0
(4)
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Figure 1: MSD calculated for a 100 ps MD simulation of 256 water molecules using NPT
condition at 1 bar and 300 K.

with
dα(t, t0;n)

.
= n · dα(t, t0). (5)

The calculation ofMSD is the standard way to obtain diffusion coefficients fromMolecular Dynamics (MD)
simulations. Assuming Einstein-diffusion in the long time limit one has for isotropic systems

Dα = lim
t→∞

1

6t
∆2

α(t). (6)

There exists also a well-known relation between the MSD and the velocity autocorrelation
function. Writing dα(t) =

∫ t
0 dτ vα(τ) in Eq. (3) one can show (see e.g. [50]) that

∆2
α(t) = 6

∫ t

0
dτ (t− τ)Cvv;αα(τ). (7)

Using now the definition (6) of the diffusion coefficient one obtains the relation

Dα =

∫ t

0
dτ Cvv;αα(τ). (8)

With Eq. (28) this can also be written as

Dα = πC̃vv;αα(0). (9)

Computationally, the MSD is calculated using the Fast Correlation Algorithm (FCA) [51].
In this framework, in the discrete case, the mean-square displacement of a particle is given by

∆2(m) =
1

Nt −m

Nt−m−1
∑

k=0

[r(k +m)− r(k)]2, m = 0 . . . Nt − 1, (10)
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where r(k) is the particle trajectory and Nt is the the number of frames of the trajectory. We
define now the auxiliary function

S(m)
.
=

Nt−m−1
∑

k=0

[r(k +m)− r(k)]2, m = 0 . . . Nt − 1, (11)

which is splitted as follow:

S(m) = SAA+BB(m)− 2SAB(m), (12)

SAA+BB(m) =
Nt−m−1
∑

k=0

[r2(k +m) + r2(k)], (13)

SAB(m) =
Nt−m−1
∑

k=0

r(k) · r(k +m). (14)

The function SAB(m) can be computed using the FCA method described in Section 3.3. For
SAA+BB(m) the following recursion relation holds:

SAA+BB(m) = SAA+BB(m− 1)− r2(m− 1)− r2(Nt −m), (15)

SAA+BB(0) =
Nt−1
∑

k=0

r2(k). (16)

This allows one to construct the following efficient scheme for the computation of the MSD :

1. Compute DSQ(k) = r2(k), k = 0 . . . Nt − 1; DSQ(−1) = DSQ(Nt) = 0.

2. Compute SUMSQ = 2 ·∑Nt−1
k=0 DSQ(k).

3. Compute SAB(m) using the Fast Fourier Transform (FFT ) method.

4. Compute MSD(m) in the following loop:

SUMSQ ← SUMSQ−DSQ(m− 1)−DSQ(Nt −m)
MSD(m) ← (SUMSQ− 2 · SAB(m)/(Nt −m)
m running from 0 to Nt − 1

It should be noted that the efficiency of this algorithm is the same as for the FCA computation
of time correlation functions since the number of operations in step (1), (2), and (4) grows
linearly with Nt.

1.2 Root Mean-Square Deviation

Theory and implementation

The Root Mean-Square Deviation (RMSD) is maybe the most popular estimator of struc-
tural similarity. It is a numerical measure of the difference between two structures that can be
defined as:

RMSD(t) =

√

∑Nα
α=1(rα(t)− rα(tref ))

Nα
(17)

where Nα is the number of atoms of the system, and rα(t) and rα(tref ) are respectively the
position of atom α at time t and tref where tref is a reference time usually choosen as the
first step of the simulation. Typically, RMSD is used to quantify the structural evolution of the

4



system during the simulation. It can provide precious information about the system especially if
it reached equilibrium or conversely if major structural changes occured during the simulation.

InMolecular Dynamics Analysis for Neutron Scattering Experiments (MDANSE ), RMSD
is computed using the discretized version of equation 17:

RMSD(n ·∆t) =

√

∑Nα
α=1(rα(t)− rref (t))

Nα
, n = 0 . . . Nt − 1. (18)

where Nt is the number of frames and ∆t is the time step.

1.3 Radius of gyration

Theory and implementation

Radius Of Gyration (ROG) is the name of several related measures of the size of an object,
a surface, or an ensemble of points. It is calculated as the Root Mean Square Distance between
the system and a reference that can be either the center of gravity of the system either a given
axis. In MDANSE , the reference is choosen to be the center of gravity of the system under
study. Mathematically, it can be defined as:

ROG(t) =

√

∑Nα
α=1(rα(t)− rcms(t))

Nα
(19)

where Nα is the number of atoms of the system, and rα(t) and rcms(t) are respectively the
position of atom α and the center of mass of the system at time t.

ROG describes the overall spread of the molecule and as such is a good measure for the
molecule compactness. For example, it can be useful when monitoring folding process.

In MDANSE , ROG is computed using the discretized version of equation 19:

ROG(n ·∆t) =

√

∑Nα
α=1(rα(t)− rcms(t))

Nα
, n = 0 . . . Nt − 1. (20)

where Nt is the number of frames and ∆t is the time step.

1.4 Angular Correlation

Theory and implementation

The angular correlation analysis computes the autocorrelation of a set of vectors describing
the extent of a molecule in three orthogonal directions. This kind of analysis can be useful when
trying to highlight the fact that a molecule is constrainted in a given direction.

For a given triplet of non-colinear atoms g=(a1,a2,a3), one can derive an orthonormal set
of three vectors v1, v2, v3 using the following scheme:

• v1 =
n1+n2

||n1+n2||
where n1 and n2 are respectively the normalized vectors along (a1,a2) and

(a1,a3) directions.

• v2 is defined as the clockwise normal vector orthogonal to v1 that belongs to the plane
defined by a1, a2 and a3 atoms

• ~v3 = ~v1 × ~v2
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Thus, one can define the following autocorrelation functions for the vectors v1, v2 and v3

defined on triplet t :
ACg,i(t) = 〈vt,i(0) · vt,i(t)〉, i = 1, 2, 3 (21)

And the angular correlation averaged over all triplets is:

ACi(t) =

Ntriplets
∑

g=1

ACg,i(t), i = 1, 2, 3 (22)

where Ntriplets is the number of selected triplets.

1.5 Velocity Autocorrelation Function

Theory and implementation

The Velocity AutoCorrelation Function (VACF ) is another interesting property describing
the dynamics of a molecular system. Indeed, it reveals the underlying nature of the forces acting
on the system.

In a molecular system that would be made of non interacting particles, the velocities would
be constant at any time triggering the VACF to be a constant value. Now, if we think about a
system with small interactions such as in a gas-phase, the magnitude and direction of the velocity
of a particle will change gradually over time due to its collision with the other particles of the
molecular system. In such a system, the VACF will be represented by a decaying exponential.

In the case of solid phase, the interaction are much stronger and, as a results, the atoms
are bound to a given position from which they will move backwards and forwards oscillating
between positive and negative values of their velocity. The oscillations will not be of equal
magnitude however, but will decay in time, because there are still perturbative forces acting on
the atoms to disrupt the perfection of their oscillatory motion. So, in that case the VACF will
look like a damped harmonic motion.

Finally, in the case of liquid phase, the atoms have more freedom than in solid phase and
because of the diffusion process, the oscillatory motion seen in solid phase will be cancelled quite
rapidly depending on the density of the system. So, the VACF will just have one very damped
oscillation before decaying to zero. This decaying time can be considered as the average time
for a collision between two atoms to occur before they diffuse away.

Mathematically, the VACF of atom α in an atomic or molecular system is usually defined
as

Cvv;αα(t)
.
=

1

3
〈vα(t0) · vα(t0 + t)〉t0 . (23)

In some cases, e.g. for non-isotropic systems, it is useful to define VACF along a given axis,

Cvv;αα(t;n)
.
= 〈vα(t0;n)vα(t0 + t;n)〉t0 , (24)

where vα(t;n) is given by
vα(t;n)

.
= n · vα(t). (25)

The vector n is a unit vector defining a space-fixed axis.
The VACF of the particles in a many body system can be related to the incoherent dynamic

structure factor by the relation:

limq→0
ω2

q2
S(q, ω) = G(ω), (26)
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where G(ω) is the Density Of States (DOS ). For an isotropic system it reads

G(ω) =
∑

α

b2α,incC̃vv;αα(ω), (27)

C̃vv;αα(ω) =
1

2π

∫ +∞

−∞
dt exp[−iωt]Cvv;αα(t). (28)

For non-isotropic systems relation (26) holds if the DOS is computed from the atomic velocity
autocorrelation functions Cvv;αα(t;nq), where nq is the unit vector in the direction of q.

1.6 Density Of States

Theory and implementation

MDANSE calculates the power spectrum of the VACF , which in case of the mass-weighted
VACF defines the phonon discrete DOS , (see Section 1.5) defined as:

DOS(n ·∆ν)
.
=

∑

α

ωαC̃vv;αα(n ·∆ν), n = 0 . . . Nt − 1. (29)

Nt is the total number of time steps and ∆ν = 1/(2Nt∆t) is the frequency step. DOS(n ·∆ν)
can be computed either for the isotropic case or with respect to a user-defined axis. The
spectrum DOS(n ·∆ν) is computed from the unnormalized VACF , such that DOS(0) gives an
approximate value for the diffusion constant D =

∑

αDα (see Eqs. 8 and 9). DOS(n ·∆ν) is
smoothed by applying a Gaussian window in the time domain [76] (see Section 3.3). Its width
in the time domain is σt = α/T , where T is the length of the simulation. We remark that the
diffusion constant obtained from DOS is biased due to the spectral smoothing procedure since
the VACF is weighted by this window Gaussian function. MDANSE computes the density of
states starting from both atomic velocities and atomic coordinates. In this case the velocities are
computed by numerical differentiation of the coordinate trajectories correcting first for possible
jumps due to periodic boundary conditions.

1.7 Global Motion Filtered Trajectory

Theory and implementation

It is often of interest to separate global motion from internal motion, both for quantitative
analysis and for visualization by animated display. Obviously, this can be done under the
hypothesis that global and internal motions are decoupled within the length and timescales of
the analysis. MDANSE can create Global Motion Filtered Trajectory (GMFT ) by filtering
out global motions (made of the three translational and rotational degrees of freedom), either
on the whole system or on an user-defined subset, by fitting it to a reference structure (usually
the first frame of the MD). Global motion filtering uses a straightforward algorithm:

• for the first frame, find the linear transformation such that the coordinate origin becomes
the center of mass of the system and its principal axes of inertia are parallel to the three
coordinates axes (also called principal axes transformation),

• this provides a reference configuration Cref ,

• for any other frames f, finds and applies the linear transformation that minimizes the
RMS distance between frame f and Cref .

The result is stored in a new trajectory file that contains only internal motions. This analysis
can be useful in case where diffusive motions are not of interest or simply not accessible to the
experiment (time resolution, powder analysis . . . ).
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1.8 Rigid-Body Trajectory

Theory and implementation

To analyze the dynamics of complex molecular systems it is often desirable to consider the
overall motion of molecules or molecular subunits. We will call this motion rigid-body motion
in the following. Rigid-body motions are fully determined by the dynamics of the centroid,
which may be the center-of-mass, and the dynamics of the angular coordinates describing the
orientation of the rigid body. The angular coordinates are the appropriate variables to compute
angular correlation functions of molecular systems in space and time. In most cases, however,
these variables are not directly available from MD simulations since MD algorithms typically
work in cartesian coordinates. Molecules are either treated as flexible, or, if they are treated
as rigid, constraints are taken into account in the framework of cartesian coordinates [54]. In
MDANSE , Rigid-Body Trajectory (RBT ) can be defined from a MD trajectory by fitting rigid
reference structures, defining a (sub)molecule, to the corresponding structure in each time frame
of the trajectory. Here ‘fit’ means the optimal superposition of the structures in a least-squares
sense. We will describe now how rigid body motions, i.e. global translations and rotations of
molecules or subunits of complex molecules, can be extracted from a MD trajectory. A more
detailed presentation is given in [55]. We define an optimal rigid-body trajectory in the following
way: for each time frame of the trajectory the atomic positions of a rigid reference structure,
defined by the three cartesian components of its centroid (e.g. the center of mass) and three
angles, are as close as possible to the atomic positions of the corresponding structure in the MD
configuration. Here ‘as close as possible’ means as close as possible in a least-squares sense.

Optimal superposition. We consider a given time frame in which the atomic positions
of a (sub)molecule are given by xα, α = 1 . . . N . The corresponding positions in the reference

structure are denoted as x
(0)
α , α = 1 . . . N . For both the given structure and the reference

structure we introduce the yet undetermined centroids X and X(0), respectively, and define the
deviation

∆α
.
= D(q)

[

x(0)
α −X(0)

]

− [xα −X] . (30)

Here D(q) is a rotation matrix which depends on also yet undetermined angular coordinates
which we chose to be quaternion parameters, abbreviated as vector q = (q0, q1, q2, q3). The
quaternion parameters fulfill the normalization condition q · q = 1 [56]. The target function to
be minimized is now defined as

m(q;X,X(0)) =
∑

α

ωα|∆|2α. (31)

where ωα are atomic weights (see Section ??). The minimization with respect to the centroids
is decoupled from the minimization with respect to the quaternion parameters and yields

X =
∑

α

ωα xα, (32)

X(0) =
∑

α

ωα x
(0)
α . (33)

We are now left with a minimization problem for the rotational part which can be written as

m(q) =
∑

α

ωα

[

D(q)r(0)α − rα

]2 !
= Min. (34)

The relative position vectors

rα = xα −X, (35)

r(0)α = x(0)
α −X(0), (36)
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are fixed and the rotation matrix reads [56]

D(q) =







q20 + q21 − q22 − q23 2(−q0q3 + q1q2) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q20 + q22 − q21 − q23 2(−q0q1 + q2q3)
2(−q0q2 + q1q3) 2(q0q1 + q2q3) q20 + q23 − q21 − q22






. (37)

Quaternions and rotations. The rotational minimization problem can be elegantly
solved by using quaternion algebra. Quaternions are so-called hypercomplex numbers, hav-
ing a real unit, 1, and three imaginary units, I, J, and K. Since IJ = K (cyclic), quaternion
multiplication is not commutative. A possible matrix representation of an arbitrary quaternion,

A = a0 · 1+ a1 · I+ a2 · J+ a3 ·K, (38)

reads

A =











a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0











. (39)

The components aν are real numbers. Similarly as normal complex numbers allow one to
represent rotations in a plane, quaternions allow one to represent rotations in space. Consider
the quaternion representation of a vector r, which is given by

R = x · I+ y · J+ z ·K, (40)

and perform the operation
R′ = QRQT , (41)

where Q is a normalized quaternion,

‖Q‖2 .
= q20 + q21 + q22 + q23 =

1

4
tr{QTQ} = 1. (42)

The symbol tr stands for ‘trace’. We note that a normalized quaternion is represented by an
orthogonal 4× 4 matrix. R′ may then be written as

R′ = x′ · I+ y′ · J+ z′ ·K, (43)

where the components x′, y′, z′, abbreviated as r′, are given by

r′ = D(q)r. (44)

The matrix D(q) is the rotation matrix defined in (37).

Solution of the minimization problem. In quaternion algebra, the rotational mini-
mization problem may now be phrased as follows:

m(q) =
∑

α

ωα‖QR(0)
α QT −Rα‖2 !

= Min. (45)

Since the matrix Q representing a normalized quaternion is orthogonal this may also be written
as

m(q) =
∑

α

ωα‖QR(0)
α −RαQ‖2. !

= Min. (46)
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This follows from the simple fact that ‖A‖ = ‖AQ‖, if Q is normalized. Eq. (46) shows that
the target function to be minimized can be written as a simple quadratic form in the quaternion
parameters [55],

m(q) = q ·Mq, (47)

M =
∑

α

ωαMα. (48)

The matrices Mα are positive semi-definite matrices depending on the positions rα and r
(0)
α :

Mα,11 = x2α + y2α + z2α + x20α + y20α + z20α − 2xαx0α − 2yαy0α − 2zαz0α
Mα,12 = 2(yαz0α − zαy0α)
Mα,13 = 2(−xαz0α + zαx0α)
Mα,14 = 2(xαy0α − yαx0α)
Mα,22 = x2α + y2α + z2α + x20α + y20α + z20α − 2xαx0α + 2yαy0α + 2zαz0α
Mα,23 = −2(xαy0α + yαx0α)
Mα,24 = −2(xαz0α + zαx0α)
Mα,33 = x2α + y2α + z2α + x20α + y20α + z20α + 2xαx0α − 2yαy0α + 2zαz0α
Mα,44 = −2(yαz0α + zαy0α)
Mα,44 = x2α + y2α + z2α + x20α + y20α + z20α + 2xαx0α + 2yαy0α − 2zαz0α







































































(49)

The rotational fit is now reduced to the problem of finding the minimum of a quadratic
form with the constraint that the quaternion to be determined must be normalized. Using the
method of Lagrange multipliers to account for the normalization constraint we have

m′(q, λ) = q ·Mq− λ(q · q− 1)
!
= Min. (50)

This leads immediately to the eigenvalue problem

Mq = λq, (51)

q · q = 1. (52)

Now any normalized eigenvector q fulfills the relation λ = q ·Mq ≡ m(q). Therefore the
eigenvector belonging to the smallest eigenvalue, λmin, is the desired solution. At the same
time λmin gives the average error per atom.

The result of RBT analysis is stored in a new trajectory file that contains only RBT motions.

1.9 Center Of Mass Trajectory

Theory and implementation

The Center Of Mass Trajectory (COMT ) analysis consists in deriving the trajectory of the
respective centers of mass of a set of groups of atoms. In order to produce a visualizable
trajectory, MDANSE assigns the centers of mass to pseudo-hydrogen atoms whose mass is
equal to the mass of their associated group. Thus, the produced trajectory can be reused
for other analysis. In that sense, COMT analysis is a practical way to reduce noticeably the
dimensionality of a system.

1.10 Order Parameter

Theory and implementation

Adequate and accurate cross comparison of the NMR and MD simulation data is of crucial
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importance in versatile studies conformational dynamics of proteins. NMR relaxation spec-
troscopy has proven to be a unique approach for a site-specific investigation of both global
tumbling and internal motions of proteins. The molecular motions modulate the magnetic in-
teractions between the nuclear spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to the study of protein dynamics, a
wide variety of experiments has been proposed to investigate backbone as well as side chain dy-
namics. Among them, the heteronuclear relaxation measurement of amide backbone 15N nuclei
is one of the most widespread techniques. The relationship between microscopic motions and
measured spin relaxation rates is given by Redfield’s theory [70]. Under the hypothesis that
15N relaxation occurs through dipole-dipole interactions with the directly bonded 1H atom and
chemical shift anisotropy (CSA), and assuming that the tensor describing the CSA is axially
symmetric with its axis parallel to the N-H bond, the relaxation rates of the 15N nuclei are
determined by a time correlation function,

Cii(t) = 〈P2(µi(0) · µi(t))〉 (53)

which describes the dynamics of a unit vector µi(t) pointing along the
15N-1H bond of the residue

i in the laboratory frame. Here P2(.) is the second order Legendre polynomial. The Redfield
theory shows that relaxation measurements probe the relaxation dynamics of a selected nuclear
spin only at a few frequencies. Moreover, only a limited number of independent observables
are accessible. Hence, to relate relaxation data to protein dynamics one has to postulate either
a dynamical model for molecular motions or a functional form for Cii(t), yet depending on a
limited number of adjustable parameters. Usually, the tumbling motion of proteins in solution
is assumed isotropic and uncorrelated with the internal motions, such that:

Cii(t) = CG(t) · CI
ii(t) (54)

where CG(t) and CI
ii(t) denote the global and the internal time correlation function, respectively.

Within the so-called model free approach [71, 72] the internal correlation function is modeled
by an exponential,

CI
ii(t) = S2

i + (1− S2
i )exp

(

− t

τeff,i

)

(55)

Here the asymptotic value S2
i = Cii(+∞) is the so-called generalized order parameter, which

indicates the degree of spatial restriction of the internal motions of a bond vector, while the
characteristic time τeff,i is an effective correlation time, setting the time scale of the internal
relaxation processes. S2

i can adopt values ranging from 0 (completely disordered) to 1 (fully
ordered). So, S2

i is the appropriate indicator of protein backbone motions in computation-
ally feasible timescales as it describes the spatial aspects of the reorientational motion of N-H
peptidic bonds vector.

When performing Order Parameter analysis, MDANSE computes for each residue i both
Cii(t) and S2

i . It also computes a correlation function averaged over all the selected bondsdefined
as:

CI(t) =
Nbonds
∑

i=1

CI
ii(t) (56)

where Nbonds is the number of selected bonds for the analysis.

2 Scattering analyses

The following analyses are described:
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• Dynamic Coherent Structure Factor

• Dynamic Incoherent Structure Factor

• Dynamic Incoherent Structure Factor (Gaussian Approximation)

• Elastic Incoherent Structure Factor

• Static Coherent Structure Factor

• Smoothed Static Coherent Structure Factor

Before introducing each of these analysis, a brief introduction about the scattering theory within
the classical framework will be given.

2.1 Introduction

The quantity of interest in neutron scattering experiments with thermal neutrons is the dynamic
structure factor, S(q, ω), which is closely related to the double differential cross-section [7],
d2σ/dΩdE. The double differential cross section is defined as the number of neutrons which
are scattered per unit time into the solid angle interval [Ω,Ω+ dΩ] and into the energy interval
[E,E+dE]. It is normalized to dΩ, dE, and the flux of the incoming neutrons,

d2σ

dΩdE
= N · k

k0
S(q, ω). (57)

Here N is the number of atoms, and k ≡ |k| and k0 ≡ |k0| are the wave numbers of scattered
and incident neutrons, respectively. They are related to the corresponding neutron energies by
E = h̄2k2/2m and E0 = h̄2k20/2m, where m is the neutron mass. The arguments of the dynamic
structure factor, q and ω, are the momentum and energy transfer in units of h̄, respectively:

q =
k0 − k

h̄
, (58)

ω =
E0 − E

h̄
. (59)

The modulus of the momentum transfer can be expressed in the scattering angle θ, the energy
transfer, and the energy of the incident neutrons:

q =

√

√

√

√2− h̄ω

E0
− 2 cos θ

√

2− h̄ω

E0
. (60)

The dynamic structure factor contains information about the structure and dynamics of the
scattering system [67]. It can be written as

S(q, ω) = 1

2π

∫ +∞

−∞
dt exp[−iωt]F(q, t). (61)

F(q, t) is called the intermediate scattering function and is defined as

F(q, t) =
∑

α,β

Γαβ〈exp[−iq · R̂α(0)] exp[iq · R̂β(t)]〉, (62)

Γαβ =
1

N

[

bα bβ + δαβ(b 2α − bα
2
)
]

. (63)
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The operators R̂α(t) in Eq. (62) are the position operators of the nuclei in the sample. The
brackets 〈. . .〉 denote a quantum thermal average and the time dependence of the position
operators is defined by the Heisenberg picture. The quantities bα are the scattering lengths of
the nuclei which depend on the isotope and the relative orientation of the spin of the neutron and
the spin of the scattering nucleus. If the spins of the nuclei and the neutron are not prepared in
a special orientation one can assume a random relative orientation and that spin and position of
the nuclei are uncorrelated. The symbol . . . appearing in Γαβ denotes an average over isotopes
and relative spin orientations of neutron and nucleus.

Usually one splits the intermediate scattering function and the dynamic structure factor
into their coherent and incoherent parts which describe collective and single particle motions,
respectively. Defining

bα,coh
.
= bα, (64)

bα,inc
.
=

√

b 2α − bα
2
, (65)

the coherent and incoherent intermediate scattering functions can be cast in the form

Fcoh(q, t) =
1

N

∑

α,β

bα,coh bβ,coh〈exp[−iq · R̂α(0)] exp[iq · R̂β(t)]〉, (66)

Finc(q, t) =
1

N

∑

α

b 2α,inc〈exp[−iq · R̂α(0)] exp[iq · R̂α(t)]〉. (67)

Rewriting these formulas, MDANSE introduces the partial terms as:

Fcoh(q, t) =

Nspecies
∑

I,J≥I

√
nInJωI,cohωJ,cohFIJ,coh(q, t), (68)

Finc(q, t) =

Nspecies
∑

I=1

nIωI,incFI,inc(q, t) (69)

where:

FIJ,coh(q, t) =
1√
nInJ

nI
∑

α

nJ
∑

β

〈exp[−iq · R̂α(t0)] exp[iq · R̂β(t0 + t)]〉t0 , (70)

FI,inc(q, t) =
1

nI

nI
∑

α=1

〈exp[−iq · R̂α(t0)] exp[iq · R̂α(t0 + t)]〉t0 . (71)

where nI , nJ , Nspecies, ωI,coh,inc and ωJ,coh,inc are defined in Section ??.
The corresponding dynamic structure factors are obtained by performing the Fourier trans-

formation defined in Eq. 61.
An important quantity describing structural properties of liquids is the static structure factor,

which is defined as

S(q) .
=

∫ +∞

−∞
dω Scoh(q, ω) = Fcoh(q, 0). (72)

In the classical framework the intermediate scattering functions are interpreted as classi-
cal time correlation functions. The position operators are replaced by time-dependent vector
functions and quantum thermal averages are replaced by classical ensemble averages. It is well
known that this procedure leads to a loss of the universal detailed balance relation,

S(q, ω) = exp[βh̄ω]S(−q,−ω), (73)
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and also to a loss of all odd moments

〈ω2n+1〉 .
=

∫ +∞

−∞
dω ω2n+1S(q, ω), n = 1, 2, . . . . (74)

The odd moments vanish since the classical dynamic structure factor is even in ω, assuming
invariance of the scattering process with respect to reflections in space. The first moment is
also universal. For an atomic liquid, containing only one sort of atoms, it reads

〈ω〉 = h̄q2

2M
, (75)

where M is the mass of the atoms. Formula (75) shows that the first moment is given by
the average kinetic energy (in units of h̄) of a particle which receives a momentum transfer
h̄q. Therefore 〈ω〉 is called the recoil moment. A number of ‘recipes’ has been suggested to
correct classical dynamic structure factors for detailed balance and to describe recoil effects in
an approximate way. The most popular one has been suggested by Schofield [68]

S(q, ω) ≈ exp[
βh̄ω

2
]Scl(q, ω). (76)

One can easily verify that the resulting dynamic structure factor fulfills the relation of detailed
balance. Formally, the correction (76) is correct to first order in h̄. Therefore it cannot be used
for large q-values which correspond to large momentum transfers h̄q. This is actually true for
all correction methods which have suggested so far. For more details we refer to Ref. [9].

2.2 Dynamic Coherent Structure Factor

Theory and implementation

Please refer to Section 2.1 for more details about the theoretical background related to the
dynamic coherent structure factor. In this analysis, MDANSE proceeds in two steps. First,
it computes the partial and total intermediate coherent scattering function using equation 68.
Then, the partial and total dynamic coherent structure factors are obtained by performing the
Fourier Transformation, defined in Eq. 61, respectively on the total and partial intermediate
coherent scattering functions.

MDANSE computes the coherent intermediate scattering function on a rectangular grid of
equidistantly spaced points along the time-and the q-axis, repectively:

Fcoh(qm, k·∆t)
.
=

Nspecies
∑

I=1,J≥I

√
nInJωI,comωI,com〈ρI(−q, 0)ρJ(q, k ·∆t)〉q, k = 0 . . . Nt−1, m = 0 . . . Nq−1.

(77)
where Nt is the number of time steps in the coordinate time series, Nq is a user-defined number
of q-shells, Nspecies is the number of selected species, nI the number of atoms of species I, ωI the
weight for specie I (see Section ?? for more details) and ρI(q, k ·∆t) is the Fourier transformed
particle density for specie I defined as,

ρI(q, k ·∆t) =
nI
∑

α

exp[iq ·Rα(k ·∆t)]. (78)

The symbol . . .q in (77) denotes an average over q-vectors having approximately the same
modulus qm = qmin + m · ∆q. The particle density must not change if jumps in the particle
trajectories due to periodic boundary conditions occcur. In addition the average particle density,
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N/V , must not change. This can be achieved by choosing q-vectors on a lattice which is
reciprocal to the lattice defined by the MD box. Let b1,b2,b3 be the basis vectors which span
the MD cell. Any position vector in the MD cell can be written as

R = x′b1 + y′b2 + z′b3, (79)

with x′, y′, z′ having values between 0 and 1. The primes indicate that the coordinates are box
coordinates. A jump due to periodic bounday conditions causes x′, y′, z′ to jump by ±1. The
set of dual basis vectors b1,b2,b3 is defined by the relation

bib
j = δji . (80)

If the q-vectors are now chosen as

q = 2π
(

kb1 + lb2 +mb3
)

, (81)

where k,l,m are integer numbers, jumps in the particle trajectories produce phase changes of
multiples of 2π in the Fourier transformed particle density, i.e. leave it unchanged. One can
define a grid of q-shells or a grid of q-vectors along a given direction or on a given plane, giving
in addition a tolerance for q. MDANSE looks then for q-vectors of the form (87) whose moduli
deviate within the prescribed tolerance from the equidistant q-grid. From these q-vectors only a
maximum number per grid-point (called generically q-shell also in the anisotropic case) is kept.

The q-vectors can be generated isotropically, anisotropically or along user-defined directions.
The

√
ωI may be negative if they represent normalized coherent scattering lenghts, i.e.

√
ωI =

bI,coh
√

∑Nspecies

I=1 nIb2I,coh

. (82)

Negative coherent scattering lengths occur in hydrogenous materials since bcoh,H is negative [7].
The density-density correlation is computed via the FCA technique described in Section 3.3.

2.3 Dynamic Incoherent Structure Factor

Theory and implementation

Please refer to Section 2.1 for more details about the theoretical background related to the
dynamic incoherent structure factor. In this analysis, MDANSE proceeds in two steps. First,
it computes the partial and total intermediate incoherent scattering function Finc(q, t) using
equation 69. Then, the partial and total dynamic incoherent structure factors are obtained by
performing the Fourier Transformation, defined in Eq.61, respectively on the total and partial
intermediate incoherent scattering function.

MDANSE computes the incoherent intermediate scattering function on a rectangular grid
of equidistantly spaced points along the time-and the q-axis, repectively:

Finc(qm, k ·∆t)
.
=

Nspecies
∑

I=1

nIωI,incFI,inc(qm, k ·∆t), k = 0 . . . Nt − 1, m = 0 . . . Nq − 1. (83)

where Nt is the number of time steps in the coordinate time series, Nq is a user-defined number
of q-shells, Nspecies is the number of selected species, nI the number of atoms of species I, ωI,inc

the weight for specie I (see Section ?? for more details) and FI,inc(qm, k ·∆t) is defined as:

FI,inc,α(qm, k ·∆t) =
nI
∑

α=1

〈exp[−iq ·Rα(0)] exp[iq ·Rα(t)]〉
q
. (84)
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The symbol . . .q in (84) denotes an average over q-vectors having approximately the same
modulus qm = qmin + m · ∆q. The particle density must not change if jumps in the particle
trajectories due to periodic boundary conditions occcur. In addition the average particle density,
N/V , must not change. This can be achieved by choosing q-vectors on a lattice which is
reciprocal to the lattice defined by the MD box. Let b1,b2,b3 be the basis vectors which span
the MD cell. Any position vector in the MD cell can be written as

R = x′b1 + y′b2 + z′b3, (85)

with x′, y′, z′ having values between 0 and 1. The primes indicate that the coordinates are box
coordinates. A jump due to periodic bounday conditions causes x′, y′, z′ to jump by ±1. The
set of dual basis vectors b1,b2,b3 is defined by the relation

bib
j = δji . (86)

If the q-vectors are now chosen as

q = 2π
(

kb1 + lb2 +mb3
)

, (87)

where k,l,m are integer numbers, jumps in the particle trajectories produce phase changes of
multiples of 2π in the Fourier transformed particle density, i.e. leave it unchanged. One can
define a grid of q-shells or a grid of q-vectors along a given direction or on a given plane, giving
in addition a tolerance for q. MDANSE looks then for q-vectors of the form (87) whose moduli
deviate within the prescribed tolerance from the equidistant q-grid. From these q-vectors only a
maximum number per grid-point (called generically q-shell also in the anisotropic case) is kept.

The q-vectors can be generated isotropically, anisotropically or along user-defined directions.
The correlation functions defined in 84 are computed via the FCA technique described in

Section 3.3. Although the efficient FCA technique is used to compute the atomic time correlation
functions, the program may consume a considerable amount of CPU-time since the number of
time correlation functions to be computed equals the number of atoms times the total number
of q-vectors. This analysis is actually one of the most time-consuming among all the analysis
available in MDANSE .

2.4 Dynamic Incoherent Structure Factor (Gaussian Approximation)

Theory and implementation

The MSD can be related to the incoherent intermediate scattering function via the cumulant
expansion [49, 50]

Fg
inc(q, t) =

Nspecies
∑

I=1

nIωI,incFg
I,inc(q, t) (88)

where Nspecies is the number of selected species, nI the number of atoms of species I, ωI,inc the
weight for specie I (see Section ?? for more details) and

Fg
I,inc(q, t) =

1

nI

nI
∑

α

exp[−q2ρα,1(t) + q4ρα,2(t)∓ . . .]. (89)

The cumulants ρα,k(t) are defined as

ρα,1(t) =
1

2!
〈d2α(t;nq)〉 (90)

ρα,2(t) =
1

4!

[

〈d4α(t;nq)〉 − 3〈d2α(t;nq)〉2
]

(91)

...
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The vector nq is the unit vector in the direction of q. In the Gaussian approximation the
above expansion is truncated after the q2-term. For certain model systems like the ideal gas,
the harmonic oscillator, and a particle undergoing Einstein diffusion, this is exact. For these
systems the incoherent intermediate scattering function is completely determined by the MSD .

MDANSE allows one to compute the total and partial incoherent intermediate scattering
function in the Gaussian approximation by discretizing equation 88:

Fg
inc(qm, k ·∆t)

.
=

Nspecies
∑

I=1

nIωI,incF
g
I,inc(qm, k ·∆t), k = 0 . . . Nt − 1, m = 0 . . . Nq − 1. (92)

with for each specie the following expression for the intermediate scattering function:

F g
I,α,inc(qm, k ·∆t) =

1

nI

nI
∑

α

exp

[

−(qm)2

6
∆2

α(k ·∆t)

]

isotropic system, (93)

F g
I,α,inc(qm, k ·∆t) =

1

nI

nI
∑

α

exp

[

−(qm)2

2
∆2

α(k ·∆t;n)

]

non-isotropic system. (94)

Nt is the total number of time steps in the coordinate time series andNq is a user-defined number
of q-shells. The (q, t)-grid is the same as for the calculation of the intermediate incoherent
scatering function (see Section 2.3). The quantities ∆2

α(t) and ∆2
α(t;n) are the mean-square

displacements, defined in Equations (3) and (4), respectively. They are computed by using
the algorithm described in Section 1.1. MDANSE corrects the atomic input trajectories for
jumps due to periodic boundary conditions. It should be noted that the computation of the
intermediate scattering function in the Gaussian approximation is much ‘cheaper’ than the
computation of the full intermediate scattering function, Finc(q, t), since no averaging over
different q-vectors needs to be performed. It is sufficient to compute a single mean-square
displacement per atom.

2.5 Elastic Incoherent Structure Factor

Theory and implementation

The Elastic Incoherent Structure Factor (EISF ) is defined as the limit of the incoherent
intermediate scattering function for infinite time,

EISF (q)
.
= lim

t→∞
Finc(q, t). (95)

Using the above definition of the EISF one can decompose the incoherent intermediate scattering
function as follows:

Finc(q, t) = EISF (q) + F ′
inc(q, t), (96)

where F ′
inc(q, t) decays to zero for infinite time. Taking now the Fourier transform it follows

immediately that
Sinc(q, ω) = EISF (q)δ(ω) + S ′inc(q, ω). (97)

The EISF appears as the amplitude of the elastic line in the neutron scattering spectrum.
Elastic scattering is only present for sytems in which the atomic motion is confined in space, as
for solids. To understand which information is contained in the EISF we consider for simplicity
a system where only one sort of atoms is visible to the neutrons. To a very good approximation
this is the case for all systems containing a large amount of hydrogen atoms, as biological
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systems. Incoherent scattering from hydrogen dominates by far all other contributions. Using
the definition of the van Hove self-correlation function Gs(r, t) [7],

b2incGs(r, t)
.
=

1

2π3

∫

d3q exp[−iq · r]Finc(q, t), (98)

which can be interpreted as the conditional probability to find a tagged particle at the position
r at time t, given it started at r = 0, one can write:

EISF (q) = b2inc

∫

d3r exp[iq · r]Gs(r, t =∞). (99)

The EISF gives the sampling distribution of the points in space in the limit of infinite time.
In a real experiment this means times longer than the time which is observable with a given
instrument. The EISF vanishes for all systems in which the particles can access an infinite
volume since Gs(r, t) approaches 1/V for large times. This is the case for molecules in liquids
and gases.

For computational purposes it is convenient to use the following representation of the EISF
[14]:

EISF (q) =

Nspecies
∑

I=1

nIωI,incEISFI(q) (100)

where Nspecies is the number of selected species, nI the number of atoms of species I, ωI,inc the
weight for specie I (see Section ?? for more details) and for each specie the following expression
for the elastic incoherent scattering function is

EISFI(q) =
1

nI

nI
∑

α

〈| exp[iq ·Rα]|2〉. (101)

This expression is derived from definition (95) of the EISF and expression (69) for the interme-
diate scattering function, using that for infinite time the relation

〈exp[−iq ·Rα(0)] exp[iq ·Rα(t)]〉 = 〈| exp[iq ·Rα]|2〉 (102)

holds. In this way the computation of the EISF is reduced to the computation of a static
thermal average. We remark at this point that the length of the MD trajectory from which
the EISF is computed should be long enough to allow for a representative sampling of the
conformational space.

MDANSE allows one to compute the elastic incoherent structure factor on a grid of equidis-
tantly spaced points along the q-axis:

EISF (qm)
.
=

Nspecies
∑

I=1

nIωIEISFI(qm),m = 0 . . . Nq − 1. (103)

where Nq is a user-defined number of q-shells, the values for qm are defined as qm = qmin+m·∆q,
and for each specie the following expression for the elastic incoherent scattering function is:

EISFI(qm) =
1

nI

nI
∑

α

〈| exp[iq ·Rα]|2〉
q
. (104)

Here the symbol . . .q denotes an average over the q-vectors having the same modulus qm. The
program corrects the atomic input trajectories for jumps due to periodic boundary conditions.
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2.6 Static Coherent Structure Factor

Theory and implementation

This analysis is a shortcut to obtain the static coherent structure factor defined as S(q) =
Fcoh(q, t = 0). It uses exactly the same procedure as the one defined in Section 2.2.

3 Structure analyses

The following analyses are described:

• Pair Distribution Function

• Coordination Number

• Spatial Density

3.1 Pair Distribution Function

Theory and implementation

The Pair Distribution Function (PDF ) is an example of a pair correlation function, which
describes how, on average, the atoms in a system are radially packed around each other. This
proves to be a particularly effective way of describing the average structure of disordered molec-
ular systems such as liquids. Also in systems like liquids, where there is continual movement
of the atoms and a single snapshot of the system shows only the instantaneous disorder, it is
extremely useful to be able to deal with the average structure.

The PDF is useful in other ways. For example, it is something that can be deduced experi-
mentally from x-ray or neutron diffraction studies, thus providing a direct comparison between
experiment and simulation. It can also be used in conjunction with the interatomic pair poten-
tial function to calculate the internal energy of the system, usually quite accurately.

Mathematically, the PDF can be computed using the following formula:

PDF (r) =

Nspecies
∑

I=1,J≥I

nInJωIωJgIJ(r) (105)

where Nspecies is the number of selected species, nI and nJ are respectively the numbers of
atoms of species I and J, ωI and ωJ respectively the weights for species I and J (see Section
?? for more details) and PDFαβ(r) is the partial PDF for I and J species that can be defined
as:

PDFIJ(r) =
〈∑nI

α=1 nαJ(r)〉
nIρJ4πr2dr

(106)

where ρJ is the density of atom of specie J and nαJ(r) is the mean number of atoms of specie
J in a shell of width dr at distance r of the atom α of specie I.

From the computation of PDF , two related quantities are computed in MDANSE , the
Radial Distribution Function (RDF ) defined as:

RDF (r) = 4πr2ρ0PDF (r) (107)

and the Total Correlation Function (TCF ) defined as:

TCF (r) = 4πrρ0(PDF (r)− 1.0) (108)
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where ρ0 is the average atomic density defined as:

ρ0 =
N

V
(109)

where N is the total number of atoms of the system and V the volume of the simulation box.
In MDANSE , the PDF , the RDF and the TCF are further splitted into an intra-and inter-

molecular parts which added together give respectively the total PDF , RDF and TCF .

3.2 Coordination number

Theory and implementation

In chemistry, the Coordination Number (CN ) is the total number of neighbours of a central
atom in a molecule or ion. The definition used in MDANSE is somewhat different and can be
seen as an extension of as the former definition. Indeed, in MDANSE , the CN is not defined
over one defined central atom but around the centers of gravity of a set of group of atoms. So,
if only one group made of only atom is selected for the analysis, then, the definition is the same
as the original definition. In that context, the CN is defined as:

n(r, r + dr) =
1

NG

NG
∑

g=1

Nspecies
∑

I=1

ngI(r, r + dr) (110)

where NG is the number of groups of atoms, Nspecies is the number of species found in the
system and ngI(r) is the CN defined for specie I defined as the number of atoms of species I
found in a shell of width dr at a distance r of the center of gravity of the group of atom g.

MDANSE allows one to compute the CN on a set of equidistantly spaced distances at
different times:

CN(rm)
.
=

1

Nframes

1

NG

Nframes
∑

f=1

NG
∑

g=1

Nspecies
∑

I=1

CNgI(rm, tf ), m = 0 . . . Nr−1, n = 0 . . . Nframes−1.

(111)
where Nr and Nframes are respectively the number of distances and times at which the CN is
evaluated and

CNgI(rm, tf ) = ngI(rm, tf ), (112)

is the number of atoms of specie I found within [rm, rm + dr] at frame f from the center of
gravity of group g.

From these expression, several remarks can be done. Firstly, the Eqs 111 and 112 can be
restricted to intramolecular and intermolecular distances only. Secondly, these equations can
be averaged over the selected frames providing a time averaged intra and intermolecular CN .
Finally, the same equations (time-dependent and time-averaged) can be integrated over r to
provide a cumulative CN . MDANSE computes all these variations.

The concept of CN is useful for structure-related analysis. It can reveal for instance some
packing effects that may have occured during the simulation.

3.3 Spatial Density

Theory and implementation

The Spatial Density (SD) can be seen as an generalization of the pair distribution function.
Indeed, pair distribution functions are defined as orientionally averaged distribution functions.
Altough these correlation functions reflects many key features of the short-range order in molec-
ular systems, it should be realized that an average spatial assembly of non-spherical particles
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can not be uniquely characterized from these one-dimensionals functions. So, structural models
postulated for the molecular ordering in nonsimple systems based only on one-dimensional PDF
will always be somewhat ambiguous. The goal of SD analysis is to provide greater clarity in the
structual analysis of molecular systems by utilizing distribution function which span both the
radial and angular coordinates of the separation vector. This can provide useful information
about the average local structure in a complex system.

MDANSE allows one to compute the SD in spherical coordinates on a set of concentrics
shells surrounding the centers of mass of selected triplets of atoms using the formula:

SD(rl, θm, φn)
.
=

1

NtripletsNgroups

Ntriplets
∑

t=1

Ngroups
∑

g=1

〈ntg(rl, θm, φn)〉 , l = 0 . . . Nr−1,m = 0 . . . Nθ−1, n = 0 . . . N

(113)
where Ntriplets and Ngroups are respectively the number of triplets and groups, rl, θm and φn

are the spherical coordinates at which the SD is evaluated, Nr, Nθ and Nφ are respectively the
number of discrete r, θ and φ values and ntg(rl, θm, φn) is the number of group of atoms of type
g whose centers of mass is found to be in the volume element defined by [r, r + dr], [θ, θ + dθ]
and [φ, φ+ dφ] in the spherical coordinates basis centered on the center of mass of triplet t.

So technically, MDANSE proceeds more or less on the following way:

• defines the center of mass cti i = 1, 2 . . . Ntriplets for each triplet of atoms,

• defines the center of mass cgi i = 1, 2 . . . Ngroups for each group of atoms,

• constructs an oriented orthonormal basis Rt
ii = 1, 2 . . . Ntriplets centered on each ct, this

basis is defined from the three vectors v1, v2, v3,

– v1 = n1+n2

||n1+n2||
where n1 and n2 are respectively the normalized vectors in (a1,a2)

and (a1,a3) directions where (a1,a2,a3) are the three atoms of the triplet t,

– v2 is defined as the clockwise normal vector orthogonal to v1 that belongs to the
plane defined by a1, a2 and a3 atoms,

– ~v3 = ~v1 × ~v2

• expresses the cartesian coordinates of each cg in each Rt,

• transforms these coordinates in spherical coordinates,

• discretizes the spherical coordinates in rl, θm and φn,

• does ntg(rl, θm, φn) = ntg(rl, θm, φn) + 1.
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[49] Rahman, A.; Singwi, K.S.; Sjölander, A. Phys. Rev. 1962, 126, 986-996.

[50] Boon, J.P.; Yip, S. Molecular Hydrodynamics; McGraw-Hill, New York, 1980.

[51] Kneller, G.R. Technical Report Jül 2215, Forschungszentrum Jülich (ISSN 0366-0885), ZB
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Appendices

The FCA algorithm Most of the quantities which can be extracted fromMD simulations are time
correlation functions. Correlation functions of discrete time series can be efficiently calculated
by using the FFT [74]. The FCA allows the number of multiplications (complexity) to be
reduced from ∝ N2

t to ∝ Nt log2(Nt). In MDANSE all time correlation functions are computed
using the FCA method which will be outlined in the following. We will also briefly comment
on spectral smoothing of Fourier transformed correlation functions.

We consider two time series

a(k ·∆t), b(k ·∆t), k = 0 . . . Nt − 1, (114)

of length T = (Nt−1) ·∆t which are to be correlated. In the following the shorthands a(k) and
b(k) will be used. The discrete correlation function of a(k) and b(k) is defined as

cab(m)
.
=











1
Nt−m

∑Nt−m−1
k=0 a∗(k)b(k +m), m = 0 . . . Nt − 1,

1
Nt−|m|

∑Nt−1
k=|m| a

∗(k)b(k − |m|), m = −(Nt − 1) . . .− 1.

(115)

The prefactors in front of the sums ensure the proper normalization of the individual channels,
m = −(Nt−1) . . . Nt−1. The asterisk denotes a complex conjugate. According to (115), cab(m)
has 2Nt − 1 data points and obeys the symmetry relation

cab(m) = c∗ba(−m). (116)

In case that a(k) and b(k) are identical, the corresponding correlation function caa(m) is called
an autocorrelation function. We define now the extended, periodic time series

A(k) =

{

a(k) k = 0 . . . Nt − 1
0 k = Nt . . . 2Nt − 1

, (117)

B(k) =

{

b(k) k = 0 . . . Nt − 1
0 k = Nt . . . 2Nt − 1

, (118)

which have the period 2Nt,

A(k) = A(k +m · 2Nt), B(k) = B(k +m · 2Nt), m = 0,±1,±2, . . . . (119)

The discrete, cyclic correlation of A(k) and B(k) is defined as

SAB(m) =
2Nt−1
∑

k=0

A∗(k)B(k +m). (120)

It is easy to see that

cab(m) =
1

Nt − |m|
SAB(m), −(Nt − 1) ≤ m ≤ Nt − 1. (121)

Using the correlation theorem of discrete periodic functions [74], SAB(m) can be written as

SAB(m) =
1

2Nt

2Nt−1
∑

n=0

exp

[

2πi

(

mn

2Nt

)]

Ã∗
(

n

2Nt

)

B̃

(

n

2Nt

)

(122)
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where Ã
(

n
2Nt

)

and B̃
(

n
2Nt

)

are the discrete Fourier transforms of A(k) and B(k), respectively:

Ã

(

n

2Nt

)

=
2Nt−1
∑

k=0

exp

[

−2πi
(

nk

2Nt

)]

A(k), (123)

B̃

(

n

2Nt

)

=
2Nt−1
∑

k=0

exp

[

−2πi
(

nk

2Nt

)]

B(k). (124)

If the Fourier transforms of the signals A(k) and B(k) as well as the inverse transform in
(122) are computed by FFT , SAB(m) can be computed by ∝ Nt log2(Nt) instead of ∝ N2

t

multiplications. It is sometimes said that the FFT method induces spurious correlations. We
emphasize that this is only the case if the time series a(k) and b(k) are not properly extended,
as indicated in Eqs. (117) and (118). The FFT method and the direct scheme (115) give, apart
from round-off errors, identical results.

In many cases not only the computation of a correlation function is required, but also the

computation of its Fourier spectrum. In principle one could use the product Ã∗
(

n
2Nt

)

B̃
(

n
2Nt

)

which is already available as an intermediate step in the computation of SAB(m) according
to (122). This would, however, not be a good estimate for the spectrum of cab(m) [75]. In
MDANSE all spectra are smoothed by applying a window in the time domain [75]:

Pab

(

n

2Nt

)

= ∆t ·
Nt−1
∑

m=−(Nt−1)

exp

[

−2πi
(

nm

2Nt

)]

W (m)
1

N − |m|SAB(m). (125)

The time step ∆t in front of the sum yields the proper normalization of the spectrum. In
MDANSE a Gaussian window [76] is used:

W (m) = exp

[

−1

2

(

α
|m|

Nt − 1

)2
]

, m = −(Nt − 1) . . . Nt − 1. (126)

Its widths in the time and frequency domain are σt = α/T and σν = 1/(2πσt), respectively. We
recall that T = (Nt− 1) ·∆t is the length of the simulation. σν corresponds to the width of the
resolution function of the Fourier spectrum.
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Acronyms

CN Coordination Number. 1, 20

COMT Center Of Mass Trajectory. 1, 10

DOS Density Of States. 1, 7

EISF Elastic Incoherent Structure Factor. 1, 17, 18

FCA Fast Correlation Algorithm. 1, 3, 4, 15, 16, 25

FFT Fast Fourier Transform. 1, 4, 25, 26

GMFT Global Motion Filtered Trajectory. 1, 7

MDANSE Molecular Dynamics Analysis for Neutron Scattering Experiments. 1, 5, 7, 8,
10, 11, 13–21, 25, 26

MD Molecular Dynamics. 1, 3, 7, 8, 10, 15, 16, 18, 25

MSD Mean-Square Displacement. 1–4, 16, 17

PDF Pair Distribution Function. 1, 19–21

RBT Rigid-Body Trajectory. 1, 8, 10

RDF Radial Distribution Function. 1, 19, 20

RMSD Root Mean-Square Deviation. 1, 4, 5

ROG Radius Of Gyration. 1, 5

SD Spatial Density. 1, 20, 21

TCF Total Correlation Function. 1, 19, 20

VACF Velocity AutoCorrelation Function. 1, 6, 7
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