
QENS models in STR_FIT 

 

General remarks 

All the QENS functions depend on Q (even the delta or the general Lorentzian may have a Q-dependence 

through the Debye-Waller factor). In order to facilitate the user input, the Q-dependence is not given in 

the parameter boxes (but in case of need, the value of Q can be used in the usual way, e.g. P1=2*(Q), as 

explained in the Parameters Rules). Instead, the current value of Q is passed to the function through the 

variable Qcurrent1D in the common c_str_fitqens and then it is handled by the function. As a 

consequence, normally only S(Q,) spectra should be fitted using the models described here. 

No specific units are defined in the functions implemented, so thhe units mentioned here are given just 

as an example assuming that the input data will be S(Q,) spectra where Q is in Å1 and  in meV.  

Most of the functions have at least one parameter that is Q-independent, so the 2D fit option should be 

used when fitting more than one spectrum. The notation in STR_FIT to say that a given parameter is Q-

independent is to give its value between brackets, e.g. [1.5]. In the following, a physical parameter will be 

enclosed between brackets to show that the parameter should have the same value for all the spectra, 

e.g. [D] to indicate the self-diffusion coefficient. 

All the standard models have the same initial four parameters (the indications given by the > and < signs 

are optional, but they are helpful to avoid that the fitting motor explores unphysical values): 

P1: Scaling (intensity factor), >0 (intensity should always be positive). 

P2: Position of the function (normally close to zero). 

P3: Fraction (to use when using more than one function in order to define e.g. the fraction of atoms 

contributing to a particular function or the weight of that function), >0 <1 (it should be a fraction 

between 0 and 1). In many cases it should be independent of Q, so then it has to be given between [] 

and used with a 2D fit. 

P4: u2 to be employed to compute the Debye-Waller factor, >0. The Q-dependence of the DW term is 

taken into account by the function, so the initial value should be given between [] and the 2D fit 

employed.  

 

  



1) Delta: Y = QENS_Delta (X, P1, P2, P3, P4) 

Returns the intensity P1*P3*exp(-P4*Q^2/3) into a single energy channel corresponding to the position 

P2 or into two energy channels if P2 does not correspond to any of the X values passed to the function. In 

the latter case the intensity is divided between them accordingly to the distance between P2 and the two 

channels that enclose P2. 

 

2) Lorenzian: Y = QENS_Lorentz (X, P1, P2, P3, P4, P5) 

𝑌 = 𝑃1 ∙ 𝑃3 ∙ 𝑒(−𝑃4𝑄2/3) ∙
1

𝜋
∙

𝑃5

(𝜔 − 𝑃2)
2 + P5

2 

General lorentzian of HWHM = P5 and centered in P2. 

 

3) Long range translational diffusion (random walk):  

      Y = QENS_RandomWalkTranslation (X, P1, P2, P3, P4, P5) 

𝑌 =  𝑃1 ∙ 𝑃3 ∙ 𝑒(−𝑃4𝑄
2/3) ∙

1

𝜋
∙

𝑃5𝑄
2

(𝜔 − 𝑃2)
2 + (𝑃5𝑄

2)2
 

Brownian diffusion model with P5 = [D] (self-diffusion constant in Å2meV). 

Definition 

This model corresponds to a Brownian motion, where particles collide randomly between them. Between 

two collisions, one particle moves along a straight line. After a collision, it goes into a random direction, 

independent of the previous one. This requirement for ‘memory loss’ between two steps limits the 

minimum length and time that can be described by the model. 

The corresponding scattering law is: 

𝑆(𝑄,) =  
1

𝜋
∙

𝐷𝑄2

2 + (𝐷𝑄2)2
 

where D is the self-diffusion coefficient. 

 

Example 



 

Dynamic structure factor, S(Q,) for a Brownian diffusion motion with a self-diffusion coefficient D = 0.1 meV Å2  

1.5192  10─9 m2/s. (Right) Log-representation. 

 

Limits 

This model can be used to represent the translational component of the dynamic structure factor at low 

Q, where the corresponding investigated distance in real space are large enough to imply a large number 

of jumps. Deviations are expected at high Q values, where specific details of the jump mechanism start to 

be observable. In this case, such details need to be introduced in the scattering model, as e.g. in the 

Chudley-Elliott or Singwi-Sjolander models.  
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4) Long range translational diffusion (jump-diffusion):  

      Y = QENS_JumpDiffusionTranslation (X, P1, P2, P3, P4, P5, P6) 

𝑌 = 𝑃1 ∙ 𝑃3 ∙ 𝑒(−𝑃4𝑄2/3) ∙
1

𝜋
∙

Γ

(𝜔 − 𝑃2)
2 + Γ2

 

Γ =
𝐷𝑄2

1 + 𝜏𝐷𝑄2
 

Jump-diffusion model with P5 = [D] (self-diffusion constant in Å2meV) and P6 = [] (residence time in 

meV1). Fixing P6 = 0, this model reduces to the random walk model. 

 



 

5) Chudley-Elliot model for long range translational diffusion :  

      Y = QENS_ChudleyElliot (X, P1, P2, P3, P4, P5, P6) 

𝑌 = 𝑃1 ∙ 𝑃3 ∙ 𝑒(−𝑃4𝑄2/3) ∙
1

𝜋
∙

Γ

(𝜔 − 𝑃2)
2 + Γ2

 

Γ =
1

𝜏
[1 −

sin(𝑄𝑙)

𝑄𝑙
] 

Jump-diffusion model with P5 = [l] (jump distance in Å) and P6 = [] (residence time in meV1).  

 

6) Jump model among N equivalent sites in a circle:  

      Y = QENS_JumpsNsites (X, P1, P2, P3, P4, P5, P6, P7) 

𝑌 = 𝑃1 ∙ 𝑃3 ∙ 𝑒(−𝑃4𝑄2/3) ∙ [𝐴0(𝑄) ∙ 𝛿(𝜔) + ∑ 𝐴𝑖(𝑄) ∙
1

𝜋
∙

Γ𝑖

(𝜔 − 𝑃2)
2 + Γ𝑖

2

𝑁−1

𝑖=1

] 

𝐴𝑖(𝑄) =
1

𝑁
∑𝑗0(𝑄𝑟𝑗) cos (

2𝑖𝑗𝜋

𝑁
)

𝑁

𝑗=1

 

𝑟𝑗 = 2𝑅 sin (
𝑗𝜋

𝑁
) 

Γ𝑖 =
1

𝜏𝑖
=

2

𝜏
sin2 (

𝑖𝜋

𝑁
) 

 

Parameters: 

P5: Number of sites [N]. This parameter is converted to an integer by the function. Normally it is 

intended to be used only as a fixed parameter defining the number of sites and it should not be fitted. 

P6: Radius of the circle [R] (Å).  

P7: [1] (meV).  

 

7) Jump model among N equivalent sites in a circle with a log-Gaussian distribution of relaxation times:  

      Y = QENS_JumpsNsitesLogNormDist (X, P1, P2, P3, P4, P5, P6, P7, P8) 

𝑌 = 𝑃1 ∙ 𝑃3 ∙ 𝑒(−𝑃4𝑄2/3) ∙ [𝐴0(𝑄) ∙ 𝛿(𝜔) + ∑ 𝐴𝑖(𝑄) ∙ (∑𝑔𝑗 ∙

𝐿

𝑗=1

1

𝜋

Γ𝑖,𝑗

(𝜔 − 𝑃2)
2 + Γ𝑖,𝑗

2 )

𝑁−1

𝑖=1

] 

𝐴𝑖(𝑄) =
1

𝑁
∑𝑗0(𝑄𝑟𝑗) cos (

2𝑖𝑗𝜋

𝑁
)

𝑁

𝑗=1

 



𝑟𝑗 = 2𝑅 sin (
𝑗𝜋

𝑁
) 

Γ𝑖 =
1

𝜏𝑖
=

2

𝜏
sin2 (

𝑖𝜋

𝑁
) 

𝑔𝑗 = 𝑔(ln Γ𝑖,𝑗) =
1

𝜎√2𝜋
∙ exp [−

1

2𝜎2
ln2 (

Γ𝑖,𝑗

Γ𝑖
)] 

Based on the rotation distribution model (A. Chahid, A. Alegría, J. Colmenero; Macromolecules 27, 3282-

3288 (1994)) that considers a distribution of jumping rates. For each jumping distance, instead of a single 

i value, a distribution of HWHMs is used. The distribution will be represented by L values of the HWHM 

(I,j) with associated weights gj taken from a log-Gaussian distribution of standard deviation  and 

normalized such that ∑ 𝑔𝑗 = 1𝐿
𝑗=1 . The I,j are chosen equally spaced in logarithmic scale in the range 

[exp(−𝜎√−2 ln𝐴𝑚𝑖𝑛), exp(𝜎√−2 ln𝐴𝑚𝑖𝑛)], where Amin is the cut-off chosen for the value of the 

distribution function with respect to its maximum. At present the code uses L =21 and Amin=0.1. 

Parameters: 

P5: Number of sites [N]. This parameter is converted to an integer by the function. Normally it is 

intended to be used only as a fixed parameter defining the number of sites and it should not be fitted. 

P6: Radius of the circle [R] (Å).  

P7: [1] (meV).  

P8: [] (adim).  

 

8) Isotropic rotational diffusion in a sphere of radius R:  

      Y = QENS_IsotropicRotationalDiffusion (X, P1, P2, P3, P4, P5, P6) 

𝑌 = 𝑃1 ∙ 𝑃3 ∙ 𝑒(−𝑃4𝑄2/3) ∙ [𝐴0(𝑄) ∙ 𝛿(𝜔) + ∑𝐴𝑖(𝑄) ∙
1

𝜋
∙

Γ𝑖

(𝜔 − 𝑃2)
2 + Γ𝑖

2

∞

𝑖=1

] 

𝐴𝑖(𝑄) = (2𝑖 + 1)𝑗𝑖
2(𝑄𝑅) 

Γ𝑖 = 𝑖(𝑖 + 1)𝐷𝑅 

 

In the code, the infinite sum is replaced by a sum over the first 10 terms. 

Parameters: 

P5: Radius of the sphere [R] (Å).  

P6: Rotational diffusion constant [DR] (meV).  

 

9) Long-range translation + isotropic rotational diffusion in a sphere of radius R:  

      Y = QENS_RotTrans (X, P1, P2, P3, P4, P5, P6, P7, P8) 



𝑌 = 𝑃1 ∙ 𝑃3 ∙ 𝑒
(−

𝑃4𝑄2

3
)
∙ (

1

𝜋

Γ𝑇

(𝜔 − 𝑃2)
2 + Γ𝑇

2)⨂(𝐴0(𝑄) ∙ 𝛿(𝜔) + ∑𝐴𝑖(𝑄) ∙
1

𝜋

Γ𝑖

(𝜔 − 𝑃2)
2 + Γ𝑖

2

∞

𝑖=1

) 

Γ𝑇 = 
𝐷𝑇𝑄2

1 + 𝜏𝐷𝑇𝑄2
 

𝐴𝑖(𝑄) = (2𝑖 + 1)𝑗𝑖
2(𝑄𝑅) 

Γ𝑖 = 𝑖(𝑖 + 1)𝐷𝑅 

Parameters: 

P5: Self-diffusion constant [D] (Å2meV) 

P6: Residence time [] (meV1) 

P7: Radius of the sphere [R] (Å).  

P8: Rotational diffusion constant [DR] (meV).  

 

 

10) Gaussian model for localized translational motion (3D):  

      Y = QENS_GaussianModel3D (X, P1, P2, P3, P4, P5, P6) 

𝑌 = 𝑃1 ∙ 𝑃3 ∙ 𝑒
(−

𝑃4𝑄2

3
)
∙ (𝐴0(𝑄) ∙ 𝛿(𝜔) + ∑𝐴𝑖(𝑄) ∙

1

𝜋

Γ𝑖

(𝜔 − 𝑃2)
2 + Γ𝑖

2

∞

𝑖=1

) 

Γ𝑖 = 
𝑖𝐷𝑇

〈𝑢𝑥
2〉

 

𝐴𝑖(𝑄) = exp(−𝑄2〈𝑢𝑥
2〉)

(𝑄2〈𝑢𝑥
2〉)𝑖

𝑖!
 

 

Gaussian model for localized translational motion in 3D proposed in F. Volino, J.-C. Perrin, and S. Lyonnard; 

J. Phys. Chem. B 110, 11217-11223 (2006). As said in the abstract of the paper, it can advantageously 

replace the previous model of diffusion inside a sphere with an impermeable surface (F. Volino and A. J. 

Dianoux, Mol. Phys. 41, 271-279 (1980), as it is simpler. It may also be more appropriate when the 

confinement is defined by soft, ill-defined boundaries. Implemented using eqns. (37) and (27a-27b) in 

Volino’s paper. Supposing a particle that can move along the direction x about a fixed point taken as the 

origin and being ux the displacement from the origin, the model assumes that ux is a Gaussian random 

variable with variance ux
2. For the 3D case, the model assumes also ux

2 = uy
2 = uz

2. 

In the present code, the number of terms in the infinite sum is limited to 100. Volino et al. indicate that, 

as a rule of thumb, the number of terms nmax to be considered in practical calculations must be (much) 

larger than Q2ux
2. Therefore any user employing this model should check that this condition is respected.  



Note that the code uses a relative large number of lorentzians and double precision in order to deal with 

the large values that the argument (Q2ux
2)i can take, so the fitting (specially 2D fits) can take a 

considerable time. 

Parameters: 

P5: Self-diffusion constant [D] (Å2meV) 

P6: Variance [ux
2] (Å2) 

 

  



Combined functions 

In principle, all the functions above can be added to produce more complex functions. Normally this will 

require linking some parameters between them. For example, if we have a system with two types of atoms 

(one not moving and another executing a simple motion that can be represented by a single Lorentzian), 

we could combine the functions QENS_delta and QENS_lorentz as shown in the figure below. 

 

As shown by the example, we need to use the same scaling parameter for both functions (so the scaling 

factor for the delta function = (P1F1), i.e. the parameter P1 used in the first function, QENS_Lorentz). The 

same happens with the position and the Debye-Waller terms, so we also have P2 (delta) = (P2F1) and P4 

(delta) = (P4F1). Finally, as we have two population of atoms, we need to specify the limits for P3 

(lorentzian) between 0 and 1 and set P3 (delta) = 1-(P3F1). 

Note that when linking two parameters, the parenthesis are compulsory, so writing P1 (delta) = P1F1 will 

fail! 

Problems 

While this approach works and allows to create complex combinations using the library of models 

available, we have found that when using more than one function the fit is less robust and often converges 

to bad solutions. This is particularly evident when using the delta function (possibly because the 

derivatives used by the fitting motor are discontinuous). Avoiding using the delta as the reference (first) 

function and tying the parameters of the delta to those of other function (and not the reverse) can help 

with this, but probably the fit will still require extensive manual intervention. 

A practical solution to this problem is to write a new function that combines two or more of the simple 

models, so the fitting motor will call a single function and there is no need to tie any parameters together. 

There are already several combined functions that have been added to the QENS library, as shown below. 

The main difference with the previous models is that in the combined functions the parameter P3 is not 

related any more to the ‘weight’ of the function to the total sum. Thus they are normally intended to be 

used isolated and not in combination with other functions, but it is up to the user to decide if he needs to 

add a second function and how the parameters must be interpreted or tied. For example, in some cases 

it could be useful to combine a QENS_DeltaLorentz to describe the quasielastic spectrum and an additional 

QENS_Lorentz to describe some independent inelastic feature at   0.  

The available functions are described below. Additional functions can be added upon request. 

 

 



101) Delta + Lorenzian: Y = QENS_DeltaLorentz (X, P1, P2, P3, P4, P5) 

𝑌 =  𝑃1 ∙ 𝑒(−𝑃4𝑄2/3) ∙ [𝑃3 ∙ 𝛿(𝜔) + (1 − 𝑃3) ∙
1

𝜋
∙

𝑃5

(𝜔 − 𝑃2)
2 + P5

2] 

 

102) Delta + 2 Lorenzians: Y = QENS_DeltaLorentz2 (X, P1, P2, P3, P4, P5, P6, P7) 

𝑌 = 𝑃1 ∙ 𝑒(−𝑃4𝑄2/3) ∙ [𝑃3 ∙ 𝛿(𝜔) + 𝑃5 ∙
1

𝜋
∙

𝑃6

(𝜔 − 𝑃2)
2 + P6

2 + (1 − 𝑃3 − 𝑃5) ∙
1

𝜋
∙

𝑃7

(𝜔 − 𝑃2)
2 + P7

2] 

Caution: The sum of the intensities of the delta and the two Lorenzians should be 1. However, although 

the user can limit the parameters to be in the range [0, 1], the function does not check that P3+P5 < 1. In 

this case, the second Lorentzian will be subtracted (as 1P3-P5 < 0). 

 

102b) Delta + 2 Lorenzians: Y = QENS_DeltaLorentz2b (X, P1, P2, P3, P4, P5, P6, P7) 

𝑌 = 𝑃1 ∙ 𝑒(−𝑃4𝑄2/3) ∙ [(1 − 𝑃3 − 𝑃5) ∙ 𝛿(𝜔) + 𝑃3 ∙
1

𝜋
∙

𝑃6

(𝜔 − 𝑃2)
2 + P6

2 + 𝑃5 ∙
1

𝜋
∙

𝑃7

(𝜔 − 𝑃2)
2 + P7

2] 

As the previous one, but with the two intensity parameters defining both Lorentzians, instead of the 

elastic peak and one lorentzian 

 

103) Delta + ChudleyElliot: Y = QENS_DeltaChudleyElliot (X, P1, P2, P3, P4, P5, P6) 

𝑌 = 𝑃1 ∙ 𝑒(−𝑃4𝑄2/3) ∙ [𝑃3 ∙ 𝛿(𝜔) + (1 − 𝑃3) ∙
1

𝜋
∙

Γ𝐶𝐸

(𝜔 − 𝑃2)
2 + Γ𝐶𝐸

2 ] 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: Fraction of immobile protons [f0]. 

P4: [u2] (Å2). 

P5: Characteristic jump distance [lCE] (Å). 

P6: Mean residence time [CE] (meV1) of restricted water 

 

104) Water in biomolecular systems (Model described in F. Natali, Y. Gerelli, C. Stelletta and J. Peters, AIP 

Conf. Proc. 1518, 551 (2013)):  

      Y = QENS_Natali (X, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15) 



𝑌 = 𝑃1 ∙ 𝑒
(−

𝑃4𝑄2

3
)
∙

[
 
 
 
 
 

𝑃3 ∙ 𝛿(𝜔) +

𝑃5 ∙ 𝑆1
RotTrans(𝑄,𝜔, 𝐷𝑤1, 𝜏𝑤1, 𝑅𝑤1, 𝐷𝑅,𝑤1) +

𝑃10 ∙ 𝑆2
RotTrans(𝑄,𝜔, 𝐷𝑤2, 𝜏𝑤2, 𝑅𝑤2, 𝐷𝑅,𝑤2) +

(1 − 𝑃3 − 𝑃5 − 𝑃10) ∙
1

𝜋
∙

𝑃15

(𝜔 − 𝑃2)
2 + P15

2 ]
 
 
 
 
 

 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: Fraction of immobile protons [f0]. 

P4: [u2] (Å2). 

P5: Fraction of protons contributing to first roto-translational lorentzian [f1]. 

P6: Self-diffusion constant [D] (Å2meV) of free water. 

P7: Residence time [] (meV1) of free water. 

P8: Radius of the sphere [R] (Å) of rotation for free water (fixed to 1.0 Å for water). 

P9: Rotational diffusion constant [DR] (meV) of free water. 

P10: Fraction of protons contributing to second roto-translational lorentzian [f2]. 

P11: Self-diffusion constant [D] (Å2meV) of restricted water. 

P12: Residence time [] (meV1) of restricted water. 

P13: Radius of the sphere [R] (Å) of rotation for restricted water (fixed to 1.0 Å for water). 

P14: Rotational diffusion constant [DR] (meV) of restricted water. 

P15: HWHM (meV) of 3rd Lorentzian related to a faster relaxation. 

Caution: As for QENS_DeltaLorentz2, nothing ensures that P3+P5+P10 < 1. 

105) Water in biomolecular systems (Simplified model: No water rotations):  

      Y = QENS_Iri (X, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11) 

𝑌 = 𝑃1 ∙ 𝑒
(−

𝑃4𝑄2

3
)
∙

[
 
 
 
 
 

𝑃3 ∙ 𝛿(𝜔) +

𝑃5 ∙ 𝑆1
Trans(𝑄,𝜔, 𝐷𝑤1, 𝜏𝑤1) +

𝑃8 ∙ 𝑆2
Trans(𝑄,𝜔, 𝐷𝑤2, 𝜏𝑤2) +

(1 − 𝑃3 − 𝑃5 − 𝑃8) ∙
1

𝜋
∙

𝑃11

(𝜔 − 𝑃2)
2 + P11

2 ]
 
 
 
 
 

 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV).  

P3: Fraction of immobile protons [f0]. 

P4: [u2] (Å2). 

P5: Fraction of protons contributing to first roto-translational lorentzian [f1]. 

P6: Self-diffusion constant [D] (Å2meV) of free water. 



P7: Residence time [] (meV1) of free water. 

P8: Fraction of protons contributing to second roto-translational lorentzian [f2]. 

P9: Self-diffusion constant [D] (Å2meV) of restricted water. 

P10: Residence time [] (meV1) of restricted water. 

P11: HWHM (meV) of 3rd Lorentzian related to a faster relaxation. 

Caution: Again, nothing ensures that P3+P5+P8 < 1. 

 

106) Water in biomolecular systems (Simplified model: Only 1 roto-translational component):  

      Y = QENS_Iri2 (X, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10) 

𝑌 = 𝑃1 ∙ 𝑒
(−

𝑃4𝑄2

3
)
∙

[
 
 
 
 

𝑃3 ∙ 𝛿(𝜔) +

𝑃5 ∙ 𝑆1
RotTrans(𝑄,𝜔, 𝐷𝑤1, 𝜏𝑤1, 𝑅𝑤1, 𝐷𝑅,𝑤1) +

(1 − 𝑃3 − 𝑃5) ∙
1

𝜋
∙

𝑃10

(𝜔 − 𝑃2)
2 + P10

2 ]
 
 
 
 

 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV).  

P3: Fraction of immobile protons [f0]. 

P4: [u2] (Å2). 

P5: Fraction of protons contributing to first roto-translational lorentzian [f1]. 

P6: Self-diffusion constant [D] (Å2meV) of free water. 

P7: Residence time [] (meV1) of free water. 

P8: Radius of the sphere [R] (Å) of rotation for free water (fixed to 1.0 Å for water). 

P9: Rotational diffusion constant [DR] (meV) of free water. 

P10: HWHM (meV) of 3rd Lorentzian related to a faster relaxation. 

Caution: Again, nothing ensures that P3+P5 < 1. 

 

107) Ionic liquids (Convolution of one lorentzian representing long-range translation + one localized 

component):  

      Y = QENS_IL1 (X, P1, P2, P3, P4, P5, P6) 

𝑌 = 𝑃1 ∙ 𝑒
(−

𝑃3𝑄2

3
)
∙ [𝑃4 ∙

1

𝜋
∙

𝑃5

(𝜔 − 𝑃2)
2 + P5

2 + (1 − 𝑃4) ∙
1

𝜋
∙

(𝑃5 + 𝑃6)

(𝜔 − 𝑃2)
2 + (𝑃5 + 𝑃6)

2
] 

Parameters: 



P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: [u2] (Å2). 

P4: EISF of localized component (range [0, 1]). 

P5: HWHM (meV) of translational component 

P6: HWHM (meV) of localized component. 

 

108) Ionic liquids (Convolution of one lorentzian representing long-range translation + two localized 

components):  

      Y = QENS_IL2 (X, P1, P2, P3, P4, P5, P6, P7, P8) 

𝑌 = 𝑃1 ∙ 𝑒
(−

𝑃3𝑄2

3
)
∙

[
 
 
 
 
 
 
 
 𝑃4 ∙ 𝑃5 ∙

1

𝜋
∙

𝑃6

(𝜔 − 𝑃2)
2 + P6

2 +

(1 − 𝑃4) ∙ 𝑃5 ∙
1

𝜋
∙

(𝑃6 + 𝑃7)

(𝜔 − 𝑃2)
2 + (𝑃6 + 𝑃7)

2
+

𝑃4 ∙ (1 − 𝑃5) ∙
1

𝜋
∙

(𝑃6 + 𝑃8)

(𝜔 − 𝑃2)
2 + (𝑃6 + 𝑃8)

2
+

(1 − 𝑃4) ∙ (1 − 𝑃5) ∙
1

𝜋
∙

(𝑃6 + 𝑃7 + 𝑃8)

(𝜔 − 𝑃2)
2 + (𝑃6 + 𝑃7 + 𝑃8)

2]
 
 
 
 
 
 
 
 

 

 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: [u2] (Å2). 

P4: EISF of 1st localized component (range [0, 1]). 

P5: EISF of 2nd localized component (range [0, 1]). 

P6: HWHM (meV) of translational component 

P7: HWHM (meV) of 1st localized component. 

P8: HWHM (meV) of 2nd localized component 

 

109) Ionic liquids (Convolution of a jump-diffusion translation with a confined translation (Volino’s model) 

and a general localized motion):  

      Y = QENS_IL3 (X, P1, P2, P3, P4, P5, P6, P7, P8, P9) 

The model can be written as:  

𝑆(𝑄,𝜔) ≈ ℒ(Γ𝑇) ⊗ [𝐴0
𝑉(𝑄)𝛿(𝜔) + ∑ 𝐴𝑖

𝑉(𝑄)ℒ(Γ𝑖
𝑉)∞

𝑖=1 ] ⊗ [𝐴0
𝐿(𝑄) + (1 − 𝐴0

𝐿(𝑄))ℒ(Γ𝐿(𝑄))] , 



with 

Γ𝑇 =
𝐷𝑄2

1+𝜏𝐷𝑄2 (see long range translational diffusion (jump-diffusion) model), 

𝐴𝑖
𝑉(𝑄) = exp(−𝑄2〈𝑢𝑥

2〉)
(𝑄2〈𝑢𝑥

2〉)
𝑖

𝑖!
,  Γ𝑖

𝑉 = 
𝑖𝐷𝑇

〈𝑢𝑥
2〉

 (see Volino’s Gaussian model for localized translational 

motion (3D)), 

𝐴0
𝐿(𝑄) = Generic EISF for an arbitrary localized motion, and  

Γ𝐿(𝑄) = HWHM of the arbitrary localized motion. 

Thus one has: 

𝑆(𝑄,𝜔) ≈ 𝐴0
𝑉(𝑄)𝐴0

𝐿(𝑄)ℒ(Γ𝑇) + 

𝐴0
𝐿(𝑄)∑𝐴𝑖

𝑉(𝑄)ℒ(Γ𝑖
𝑉 + Γ𝑇)

∞

𝑖=1

+ 

𝐴0
𝑉(𝑄) (1 − 𝐴0

𝐿(𝑄))ℒ(Γ𝐿(𝑄) + Γ𝑇) + 

(1 − 𝐴0
𝐿(𝑄))∑𝐴𝑖

𝑉(𝑄)ℒ(Γ𝑖
𝑉 + Γ𝐿(𝑄) + Γ𝑇)

∞

𝑖=1

 

And the coded function is: 

𝑌 = 𝑃1 ∙ 𝑒
(−

𝑃3𝑄2

3
)
∙

[
 
 
 
 
 
 
 
 
 
 𝐴0

𝑉(𝑄) ∙ 𝑃8 ∙
1

𝜋
∙

Γ𝑇

(𝜔 − 𝑃2)
2 + Γ𝑇

2 +

𝑃8 ∙ ∑𝐴𝑖
𝑉(𝑄)

100

𝑖=1

∙
1

𝜋
∙

(Γ𝑖
𝑉 + Γ𝑇)

(𝜔 − 𝑃2)
2 + (Γ𝑖

𝑉 + Γ𝑇)
2 +

𝐴0
𝑉(𝑄) ∙ (1 − 𝑃8) ∙

1

𝜋
∙

(𝑃9 + Γ𝑇)

(𝜔 − 𝑃2)
2 + (𝑃9 + Γ𝑇)2

+

(1 − 𝑃8) ∙ ∑𝐴𝑖
𝑉(𝑄)

100

𝑖=1

∙
1

𝜋
∙

(𝑃9 + Γ𝑖
𝑉 + Γ𝑇)

(𝜔 − 𝑃2)
2 + (𝑃9 + Γ𝑖

𝑉 + Γ𝑇)
2
]
 
 
 
 
 
 
 
 
 
 

 

with  

Γ𝑇 =
𝑃4𝑄

2

1 + 𝑃5𝑃4𝑄2
 

𝐴𝑖
𝑉(𝑄) = exp(−𝑄2𝑃7)

(𝑄2𝑃7)
𝑖

𝑖!
 

Γ𝑖
𝑉 = 

𝑖𝑃6

𝑃7
 

 



Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: [u2] (Å2). 

P4: [D] (self-diffusion constant in Å2meV for the long-range translation). 

P5: [] (residence time in meV1 for the long-range translation). 

P6: [Dconf] (self-diffusion constant in Å2meV for the confined translation). 

P7: Variance [ux
2] (Å2) in Volino’s model for confined translation. 

P8: EISF of localized component (range [0, 1]). 

P9: HWHM (meV) of localized component. 

 

 

110) Jump model among N equivalent sites in a circle + fraction of fixed atoms:  

      Y = QENS_Fixed_JumpsNsites (X, P1, P2, P3, P4, P5, P6, P7) 

 

𝑌 = 𝑃1 ∙ 𝑒(−𝑃3𝑄2/3) ∙ [[𝑃4 + (1 − 𝑃4) ∙ 𝐴0(𝑄)] ∙ 𝛿(𝜔) + ∑(1 − 𝑃4) ∙ 𝐴𝑖(𝑄) ∙
1

𝜋
∙

Γ𝑖

(𝜔 − 𝑃2)
2 + Γ𝑖

2

𝑁−1

𝑖=1

] 

𝐴𝑖(𝑄) =
1

𝑁
∑𝑗0(𝑄𝑟𝑗) cos (

2𝑖𝑗𝜋

𝑁
)

𝑁

𝑗=1

 

𝑟𝑗 = 2𝑅 sin (
𝑗𝜋

𝑁
) 

Γ𝑖 =
1

𝜏𝑖
=

2

𝜏
sin2 (

𝑖𝜋

𝑁
) 

 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: [u2] (Å2). 

P4: Fraction of fixed atoms (range [0,1]). 

P5: Number of sites [N]. This parameter is converted to an integer by the function. Normally it is 

intended to be used only as a fixed parameter defining the number of sites and it should not be fitted. 

P6: Radius of the circle [R] (Å).  

P7: [1] (meV).  

 



111) 2 x Jump model among N equivalent sites in a circle + fraction of fixed atoms:  

      Y = QENS_Fixed_2JumpsNsites (X, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11) 

𝑌 = 𝑃1 ∙ 𝑒(−𝑃3𝑄2/3) ∙

[
 
 
 
 
 
 
 
{(1 − 𝑃4 − 𝑃8) + 𝑃4 ∙ 𝐴0

𝐼 (𝑄) + 𝑃8 ∙ 𝐴0
𝐼𝐼(𝑄)} ∙ 𝛿(𝜔) +

∑ 𝑃4 ∙ 𝐴𝑖(𝑄) ∙
1

𝜋
∙

Γ𝑖

(𝜔 − 𝑃2)
2 + Γ𝑖

2

𝑁1−1

𝑖=1

+

∑ 𝑃8 ∙ 𝐴𝑗(𝑄) ∙
1

𝜋
∙

Γ𝑗

(𝜔 − 𝑃2)
2 + Γ𝑗

2

𝑁2−1

𝑗=1 ]
 
 
 
 
 
 
 

 

𝐴𝑖(𝑄) =
1

𝑁1
∑ 𝑗0(𝑄𝑟𝑘) cos (

2𝑖𝑘𝜋

𝑁1
)𝑁

𝑘=1      ;   𝑟𝑘 = 2𝑅1 sin (
𝑘𝜋

𝑁1
)    ;   Γ𝑖 =

1

𝜏𝑖
=

2

𝜏1
sin2 (

𝑖𝜋

𝑁1
) 

 

𝐴𝑗(𝑄) =
1

𝑁2
∑ 𝑗0(𝑄𝑟𝑘) cos (

2𝑖𝑘𝜋

𝑁2
)𝑁

𝑘=1      ;   𝑟𝑘 = 2𝑅2 sin (
𝑘𝜋

𝑁2
)    ;   Γ𝑗 =

1

𝜏𝑗
=

2

𝜏2
sin2 (

𝑗𝜋

𝑁2
) 

 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: [u2] (Å2). 

P4: Fraction of atoms contributing to first jump model (range [0,1]). 

P5: Number of sites in first jump model [N]. This parameter is converted to an integer by the function. 

Normally it is intended to be used only as a fixed parameter defining the number of sites and it should 

not be fitted. 

P6: Radius of the circle in first jump model[R] (Å).  

P7: [1] for first jump model (meV).  

P8: Fraction of atoms contributing to second jump model (range [0,1]). 

P9: Number of sites in second jump model [N]. This parameter is converted to an integer by the function. 

Normally it is intended to be used only as a fixed parameter defining the number of sites and it should 

not be fitted. 

P10: Radius of the circle in second jump model [R] (Å).  

P11: [1] for second jump model (meV).  

 

112) Jump model among N equivalent sites in a circle with a log-Gaussian distribution of relaxation 

times + fraction of fixed atoms:  

      Y = QENS_Fixed_JumpsNsitesLogNormDist (X, P1, P2, P3, P4, P5, P6, P7, P8) 

𝑌 = 𝑃1 ∙ 𝑒(−𝑃3𝑄2/3) [[𝑃4 + (1 − 𝑃4) ∙ 𝐴0(𝑄)]𝛿(𝜔) + ∑(1 − 𝑃4) ∙ 𝐴𝑖(𝑄)(∑𝑔𝑗 ∙

𝐿

𝑗=1

1

𝜋

Γ𝑖,𝑗

(𝜔 − 𝑃2)
2 + Γ𝑖,𝑗

2 )

𝑁−1

𝑖=1

] 



𝐴𝑖(𝑄) =
1

𝑁
∑𝑗0(𝑄𝑟𝑗) cos (

2𝑖𝑗𝜋

𝑁
)

𝑁

𝑗=1

 

𝑟𝑗 = 2𝑅 sin (
𝑗𝜋

𝑁
) 

Γ𝑖 =
1

𝜏𝑖
=

2

𝜏
sin2 (

𝑖𝜋

𝑁
) 

𝑔𝑗 = 𝑔(ln Γ𝑖,𝑗) =
1

𝜎√2𝜋
∙ exp [−

1

2𝜎2
ln2 (

Γ𝑖,𝑗

Γ𝑖
)] 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: [u2] (Å2). 

P4: Fraction of fixed atoms (range [0,1]). 

P5: Number of sites [N]. This parameter is converted to an integer by the function. Normally it is 

intended to be used only as a fixed parameter defining the number of sites and it should not be fitted. 

P6: Radius of the circle [R] (Å).  

P7: [1] (meV).  

P8: [] (adim).  

 

113) Delta + Translation + Confined translation (Volino’s model) + Isotropic rotation:  

      Y = QENS_Mix1 (X, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12) 

𝑌 = 𝑃1 ∙ 𝑒
(−

𝑃3𝑄2

3
)
∙

[
 
 
 
 

𝑃4 ∙ 𝛿(𝜔) +

𝑃5 ∙ 𝑆1
JumpTrans(𝑄,𝜔, 𝐷1, 𝜏1) +

𝑃8 ∙ 𝑆2
Volino(𝑄,𝜔, 𝐷2, 𝑢2) +

(1 − 𝑃4 − 𝑃5 − 𝑃8) ∙ 𝑆3
𝐼𝑠𝑜𝑅𝑜𝑡(𝑄,𝜔, 𝐷3, 𝑅3)]

 
 
 
 

 

Parameters: 

P1: Intensity scaling (arbitrary units). 

P2: Center of the functions (meV). 

P3: [u2] (Å2). 

P4: Fraction of immobile protons [f0]. 

P5: Fraction of protons contributing to first Lorentzian (long-range jump translational diffusion) [f1]. 

P6 = [D] (self-diffusion constant in Å2meV)  

P7 = [] (residence time in meV1). 

P8: Fraction of protons contributing to second Lorentzian (confined translational diffusion, Volino) [f2]. 

P9: Self-diffusion constant [D] (Å2meV). 

P10: Variance [ux
2] (Å2). 



P11: Radius of the sphere [R] (Å) for isotropic rotational diffusion. 

P12: Rotational diffusion constant [DR] (meV).  

 

Caution: As for QENS_DeltaLorentz2, nothing ensures that P3+P5+P10 < 1. 

 


