
A short guide to the use of the event_file tool in Lamp

Miguel A. Gonzalez (gonzalezm@ill.fr)

ILL, 1st December 2018 (beta version)

1. Starting

Launch Lamp and use the command event_file, inst=’D22’ in any of the Do boxes (see Fig. 1) to launch

the interface window to read and manipulate event files. At present, only data measured on D22 with

the new format (used since cycle 183) can be read. List mode data recorded in D11, D22, and Salsa

using the old format can be still read using event_file_old, inst=INST, where INST can be either ‘D11’,

‘D22’ or ‘Salsa’. If the instrument name is not given, the program will assume that it is the same

instrument as the one selected on the main Lamp window (Fig. 1).

The current version is still a beta version, only minimally tested. Please send any comments,

suggestions or bug reports to gonzalezm@ill.fr.

Fig. 1: Lamp interface and command to start the event file interface.

mailto:gonzalezm@ill.fr

2. Event file analysis interface

Fig. 2 shows the empty interface that appears after calling event_file. Use the browse button or give

a list mode file in the corresponding box (if the files can be found in the current working path) to select

a single numor. All the recorded events are read and stored in internal arrays for further treatment

(see appendix 1).

Fig. 2: Interface of the event file manipulation tool.

After reading a file, the interface will be populated as shown in Fig. 3. The first 3 lines contain

information about the content of the file and correspond to the number of events actually stored in

the different internal arrays (appendix 1). The first number gives the total number of events registered

during the acquisition and it will not change until a new file is read. Initially, the number of detector

events given in the 2nd line should be the same, but this second number can change if a trigger is

selected or some events removed. The 4th line gives some information about the last operation

performed. After reading a file, the useful time range (in seconds) is determined by the times of the

first and last events, tmin and tmax. The minimum and maximum values of the time range can be changed

by the user, in order to use only part of the recorded data. In this case, the number of detector events

having times inside the new limits is calculated and shown in the 4th line of the message window.

Useful: The time values of the first and last event are kept in memory, so if after selecting a time range

you want to come back to the initial values you can find them by clicking in the Min or Max buttons!

The next row of the interface allows selecting a trigger option. The default option is not to use any

trigger, so the binning of the data is done using the absolute times recorded in the file. In this case,

there is a single cycle of duration tmax tmin, and this value (in milliseconds) is shown in the Time/cycle

box. The default number of slices is set to 1, and accordingly, the time/slice is initially equal to the cycle

time.

The default binning mode is set to linear binning so that all bins have the same time duration.

However, two alternative options are available: log bins and variable time bins. In the latter case, each

bin has a different time duration, such that the number of detector events in each bin is approximately

the same.

The View row allows selecting what information to plot, as explained in the following section. Note

that the data to be plotted are sent to a Lamp workspace, so you need to check the Lamp main

interface to see the plot. You can also use Superplot (Lamp: Tools  Overplotting) to look at the data.

The final row is used to provide information about the workspace used to store the last data sent to

plot and allows to export the binned data.

Fig. 3: Event file interface after reading a list mode file.

3. Checking the data

After reading a list mode file (Fig. 3), you can immediately select the option View: Total 2D (x,y). This

will show in Lamp’s workspace 2 the 2D image corresponding to the total number of counts detected

during the selected time range (see Fig. 4).

Fig. 4: Main Lamp interface showing the 2D image corresponding to the total number of counts in

the detector (stored in workspace W2).

Care: If the show option is called before any binning has been done, the program will perform the

binning automatically using the current settings and then will send the output data to Lamp. But if a

binning has already been done, the last set of data in memory is plotted, without doing a new

rebinning. So if you change some settings, perform the binning explicitly with the BIN button before

using SHOW.

The option View: Time vs event number displays the time in seconds of each event (Fig. 5). This can be

useful to check if the counting rate is constant along the whole run or if there are variations, as well

as to observe if there are any “bad” events having an unphysical time (either too large or too small).

Specific details can be displayed either by using the mouse to enlarge the image shown in the main

Lamp window or by plotting the workspace using Superplot.

Fig. 5: Main Lamp interface showing the time corresponding to each detector event (workspace W3).

The option View: Time distribution of events shows the complementary view, displaying the number

of events registered as a function of time (Fig. 6). The selected time range is divided into 100 bins of

equal duration and the number of counts registered in each of the periods is calculated and shown.

The next three options will only work if one of the trigger options (chopper or sample) has been

selected. The first one, View: Trigger period, displays the lapse of time between consecutive triggers

(Fig. 7), while View: Time distribution of trigger periods shows the distribution of lapses between

triggers. In this case, the maximum lapse is divided into 100 bins of equal duration and a histogram

with the number of trigger periods falling into each bin calculated (Fig. 8). Finally View: Trigger history

will create a workspace where the x-axis contains the absolute times of each trigger. Then, Superplot

can be used to plot the trigger history, as shown in Fig. 9.

If needed, some triggers can be removed in order to keep only those which are relevant for the desired

binning (see section on removing bad events and triggers).

Fig. 6: Main Lamp interface showing the number of events registered as a function of time

(workspace W4).

Fig. 7: Main Lamp interface showing the lapse of time between consecutive triggers (workspace W5).

Fig. 8: Main Lamp interface showing the distribution of trigger times (workspace W6).

Fig. 9: Superplot window showing the absolute times of the recorded triggers (workspace W7).

4. Doing a simple binning

After reading the data, select the desired number of slices and the binning mode, and click on the

BIN button (Fig. 10).

Fig. 10: Binning a list mode file.

The binning procedure produces a 3D array of dimensions [NXpixels, NYpixels, Nslices], which can be

plotted using the option View: Slices (x, y, frame) (Fig. 11).

Fig. 11: Lamp graphical window showing the 2D images corresponding to each of the generated

slices (workspace W1).

The initial time of each slice is calculated automatically from the duration of the full cycle and the

selected number of slices. The time per slice is also calculated accordingly and shown in the Time/slice

window, but naturally, it applies only to the linear binning case.

Useful: The slice time can be changed manually, allowing in this way to have either overlapping or

non-overlapping bins. For example, for a cycle of 10 milliseconds and 10 slices, the default time per

slice would be 1 ms and the binning will be done using the following bins: [0-1], [1-2], …, [9-10] ms.

However setting manually the time per slice to 2 ms, the 10 slices generated will correspond to the

following times: [0-2], [1-3], [2-4], …, [8-10], [9-10] ms. This can be useful in some cases to improve

the statistical quality of the generated slices. Although likely less useful, it is also possible to use a

smaller time per slice, in which case not all the data will be used to produce the binned slices. For

example, using 0.5 ms in the previous example, the 10 bins will contain data measured at times [0-

0.5], [1-1.5], [2-2.5], …, [9-9.5] ms.

The Time/cycle value can also be changed manually. In most cases, this is not particularly useful, but

it can be a good way of forcing similar time binnings when reducing several list mode files having

different durations.

On the other hand, the Time/slice value is only relevant when the linear bin option is selected. In the

other three cases, the time limits of each bin are calculated automatically and they are different for

different bins, so the value shown in the interface is irrelevant. The log bin option create time bins of

different lengths using logarithmic binning, i.e. log 𝑡𝑖+1 − log 𝑡𝑖 = constant. The inverse log bin option

calculates log bins and then reverses them, so the duration of the bins reduces with time. The

difference between both types of binning can be shown schematically as follows:

Log bin: …

Inverse log bin: …

Finally, the last option (Equal # events per bin) generates also variable time bins whose duration is

such that the total number of events in each slice is the same. This could be useful to generate slices

having similar statistics.

5. Binning using a trigger

The procedure is analogous to the simple binning explained above, and is applied whenever a trigger

(either chopper or sample) is selected in the Use Trigger? box. At present, the options in this box are

exclusive, so only one trigger can be used at a given time.

In this case, the cycle time is not given by the run duration, but by the trigger period. At present, the

code assumes that the trigger events are periodic and calculates the average period, which is then

shown in the Time/cycle box. Evidently, this is incorrect if the time structure of the trigger is not

periodic, as shown for example in Figs. 7-9. In this case, it is recommended to remove any useless

trigger (see section Removing bad events or triggers).

When clicking the bin option while the sample or chopper option is selected, two new internal arrays

are generated: Dtimer_trigger and Mtimer_trigger (see appendix 1), containing the relative time of

each event with respect to the previous trigger. The binning is done using this relative times!

Care: All the events (either detector or monitor events) taking place before the first trigger event

cannot be handled and are automatically discarded. This is done for the array Dtimer_trigger, but also

for the Dtimer array (and for Mtimer_trigger and Mtimer, as well). The number of detector events

removed is indicated in the information line of the message window, and now the number of detector

events will be smaller than the number of XY counts. Removed events are definitely lost, so if at a

later time you want to do a new binning without the trigger and using the full set of events, you need

to read again the file.

As before, you can choose the desired number of slices and the corresponding time for a slice is

adjusted automatically, but can be changed manually before pressing the button in order to produce

overlapping bins. All the cycles defined by the triggers are considered equivalent, so the counts

arriving during relative times corresponding to the 1st bin after each trigger are summed together into

the 1st slice, counts with times corresponding to the 2nd bin contribute to the 2nd slice, etc.

6. Removing bad events or triggers

Ideally, all the detector events will be saved correctly in the list mode file. But if for any reason, there

is an error in the recorded time for a given event, there are two options available to try to find these

rare bad events. The first one (Remove: Events with times < #1 or > #N) uses the absolute times of the

first and last detected events as a reference and eliminates any event that has a time outside that

range. The second option to identify and remove bad events - Remove: Outlier events (using poly fit)

– fits the time dependence of the events using a polynomial and discards any event whose time

deviates too much from the fitted dependence. When this option is selected, a new window appears

(Fig. 12), allowing the user to select the degree of the polynomial to use to fit the time dependence

and the acceptance region. The latter is given as a multiple M of 𝜎 =
√𝜒2

𝑁𝑒vents
⁄ and any event

having a time such that |𝑡𝑖 − 𝑡𝑓𝑖𝑡| > 𝑀𝜎 will be removed. The window also provides an option to give

a maximum number of events (in percentage) that could be removed. If the number of bad events

found by the program is larger than this number nothing will be done, as probably the fit was not

appropriate. Finally, it is possible to select the possibility of sending the data and the fit to Lamp

workspaces 56-60. This is always a good idea, as it is recommended to check graphically using

Superplot both the fit and the events identified as bad (see Fig. 13).

Fig. 12: Window to set options to remove events having times showing too large deviations from the

expected behaviour.

Fig. 13: Superplot window showing some events removed due to a too large deviation in their times

with respect to the fitted polynomial.

There are also two options available to select which trigger events to keep. The first one is Remove:

Triggers with lapse < min delay. When selected, a forbidden time is defined after each accepted

trigger, so that any trigger arriving during the forbidden period is automatically discarded. This time,

in milliseconds, is defined by the user in the (min delay in ms or trigger pattern) box (Fig. 14).

Fig. 14: Example showing how to remove any trigger happening before 1 minute has elapsed from

the last accepted trigger.

A second and more flexible option consists in giving a pattern, using also the (min delay in ms or trigger

pattern) box, to indicate which triggers are to be kept and those to discard. The pattern can be given

as a sequence of letters, e.g. ‘xxxo’, or numbers, e.g. ‘1110’. The only characters recognized are ‘o’,

c

c

‘O’, and ‘0’, which are used to identify the triggers to be kept. Thus the two sequences above will keep

only the 4th, 8th, 12th, … triggers.

For example, applying the pattern ‘xxxxxxox’ to the complex trigger structure shown in Figs. 7-9, which

repeats every 8 triggers, we will have the window shown in Fig. 15.

Fig. 15: Example showing how to apply a trigger pattern to select the triggers to use in the binning.

If we check now the trigger period (Fig. 16), we observe that we have 9 cycles defined by the 10 triggers

kept and that they all have a similar duration.

Fig. 16: Time step between selected triggers, after applying a pattern to skip 7/8 of initial triggers.

c

c

Care: Any removed event (either a detector or a trigger event) is permanently lost. The only way of

recovering them (for example, to do a new binning using the full set of detector events or a different

trigger as reference) is to read again the list mode file.

7. Exporting the binned data

After binning a list mode file, you can export it in order to continue the reduction and analysis of the

binned data using other programs, e.g. SansSheet in Lamp or Grasp. Select Export binned data 

Current File and the current 3D array of dimensions [NXpixels, NYpixels, Nslices] will be saved as a standard

NeXus file, named ######_lst.nxs, where ####### is the number of the list mode file. The NeXus file

generated is of the kinetic type and keeps all the instrument parameters present in the original

######.nxs file, so it can be read and manipulated as a standard ILL NeXus numor.

Care: The output NeXus file is generated by modifying the corresponding NeXus file, so in order to be

able to export the binned data you need to have both files (######.lst and ######.nxs) in the same

directory. Additionally, the routine to modify the data of the input NeXus depends on finding the right

tags, so it is very dependent on any change in the naming of the NeXus files. Contact me if you have

problems exporting due to changes in the NeXus files.

If you have recorded a large number of list mode files and want to apply the same treatment to all of

them, use the option Export binned data  Apply settings to a list of files and export. This will open a

dialogue window that allows you to select as many list mode files as you want. The selected files are

then read one by one, binned using the current settings, and exported.

Care: At present, when exporting automatically a list of files, no bad events or triggers are removed.

Therefore if you need this, you will have to treat and export your list mode files manually one by one.

Appendix 1: Internal arrays, mapping with channels registered in list mode files and memory

requirements

All the events registered in the list mode file are read in the following internal arrays:

Counts: 2D array (dimensions Xsize and Ysize, hardcoded for each instrument in function read_lst)

containing the integrated detector image.

Xdet: 1D array containing the horizontal position of each event registered in the detector.

Ydet: 1D array containing the vertical position of each event registered in the detector.

Dtimer: 1D array containing the time of each event registered in the detector.

Mtimer: 1D array containing the time of each event registered in the monitor.

Ctimer: 1D array containing the time of each event registered in any equipment (but called

chopper in the interface).

Stimer: 1D array containing the time of each event registered in a second equipment (but called

sample in the interface).

Additionally, if the chopper or sample trigger options are selected, two new arrays are created:

Dtimer_trigger: 1D array containing the time since the last trigger of each detector event.

Mtimer_trigger: 1D array containing the time since the last trigger of each monitor event.

D22 mapping: Note that this could change depending on how the electronic cards are connected! If

the channels do not correspond to the mapping below, some type of events would either be skipped

or read in the wrong array!

Detector dimensions = 128 (horizontal) x 256 (vertical)

Cards 1-4 (type 1740 QDIV) register detector events

Card 5 (GGPickup) register monitor events and two other channels, that can be used to store e.g.

a chopper pickup or a signal marking the start of a pulse applied to the sample. At present:

 Channel 1 events are stored in Stimer

 Channel 2 events are stored in Mtimer

 Channel 4 events are stored in Ctimer

Memory requirements: All the events are stored in memory, so if the list mode file is too large, it can

be impossible to read it if the computer does not have enough RAM. As an approximate reference,

after reading a file occupying 505 MB on the hard disk and containing more than 33106 events, the

dynamic memory used by Lamp to store all the relevant information is ~760 MB. And after doing a

binning using 100 slices and a trigger (so that the two additional arrays Dtimer_trigger and

Mtimer_trigger are generated) it goes up to ~1020 MB. In this case, the reading time can be of the

order of 10-30 seconds, and the binning takes about 5-10 seconds. As a rule of thumb, avoid

generating files larger than 2 GB.

