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MCMAG is a Fortran program based upon a Monte Carlo algorithm to simulate magnetic models from postulated coupling 

constants. Any kind of 3D periodic model as well as real magnetic structure can be simulated without limitation of interaction 

distance. The spin Hamiltonian contains a two spin coupling term of Heisenberg type, a single ion anisotropy term and an 

applied field term. MCMAG can be used as a tool to study the temperature and field behaviour of complex magnetic models; 

real magnetic structures can also be reproduced, as well as peculiar dynamic effects and magnetic transitions under applied 

field. The program provides facilities to determine (H, T) phase diagrams. 

1. Introduction 

The numerical technique known as Monte Carlo 
is extensively used in statistical physics (see for 
instance refs. [l-3]). Initially introduced by 

Metropolis et al. [4] for a study of the equation of 
state of liquids, the method has spread to a broad 
range of application in physics and has been par- 
ticularly fruitful in the field of magnetic systems. 

Most of these studies have been devoted to inves- 

tigation of phase transitions and critical phenom- 

ena, most often on simple model systems (cubic 
lattices, frustrated triangular lattice.. . ). In this 

paper, we shall concentrate on a different, more 
experimentalist-directed approach; indeed Monte 
Carlo simulation can readily contribute at eluci- 
dating and understanding the magnetic behavior 
of “real” complex magnetic materials and thereby 
be a useful tool to investigate magnetic ordering in 

solids. The aim of this paper is to describe a 
“general purpose” program for Monte Carlo simu- 
lation of magnetic models and illustrate some of 

its applications. 
The presentation of this paper is as follows: in 

section 2 we briefly recall the basic features of the 
Monte Carlo and simulated annealing techniques 
and give a general description of the program. 
Some applications of the program are presented in 

section 3: this includes the simulation of magnetic 

models, the prediction of magnetic structures, the 
simulation of induced transition under applied 

field and of thermal behaviour in some peculiar 
magnetic materials. In the last section, we shall 
briefly examine applications and possible future 
extensions of the program. 

2. Methodology 

2.1. Algorithm 

The algorithm used in the program MCMAG is 
based upon the Metropolis “importance sampling” 

method [4]. Details about the theoretical grounds 
of the algorithm can be found in ref. [2] for 
instance. From a technical point of view, the 
method can be summarized as follows: consider a 
system of n spins in interaction, each spin i(i = 

1, n) with the orientation S,. The interaction en- 
ergy of the system may be written E = 

f(s19 s2,*..Y Si,*.*, S,). The aim of the method is, 
knowing the function f (which will be defined 
below), to minimize E by adjusting the orienta- 
tions S, in such a way as to determine the ground 
state of the system. In the program, the spins are 
examined one after each other and their possible 
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new orientation randomly determined. If the new 
orientation of the spin lowers the energy of the 

system, it is accepted. If it increases the energy, 

the new orientation is not systematically rejected: 
an occurrence probability p is affected to the 

transition, where p is defined by p = exp( - (E, - 
E,)/kT). This probability is similar to a Boltz- 
mann factor, T being assimilated to the tempera- 

ture (k is a scale factor). The low temperature 
equilibrium is reached by simulated annealing [5]: 

during the process, T is slowly decreased and, if 
this annealing is performed slowly enough, the 

spin configuration which is frozen will correspond 

to the ground state configuration of the system. 
Thus the successive steps of the calculation are as 

follows: 

_ 

_ 

- 

_ 

internal - 

loop - 

_ 

generate a system of n randomly 

orientated spins SF, s;, . . SO, 
So * energy E, . . . . n 

and define an initial value of temper- 

ature TO 

select a spin S,’ among the n spins 
propose a new randomly determined 

orientation S,’ j new energy E, 
calculate p = exp[ - (E, - E,,)/kT,) 

draw a random number Nr (0 < Nr < 

1) 
if Nr <p the new orientation S,’ is 

adopted 

_ a single-ion anisotropy term: 

for each spin i this term is defined as D,( r, * S,)’ 
where D, is the anisotropy coefficient and r, the 

direction of the anisotropy. 
_ an applied field term: 
if an external magnetic field is applied, one must 
include an additional term defined by - E:= ,H * S, 

where H is the applied field. 
Thus the more general form of the energy used in 

the program is: 

E= - c cJ,“lS;y+ t D,(tyS,)’ 
(i,j) a I=1 

if Nr > p the previous orientation S,” - c H-S, where CX=X, y, z. 

is preserved I=1 

select a new spin A 2D version of the program with planar XY 
spins is available, as well as a 3D Ising version. 

This loop is executed n times in such a way as 
to examine every spin in the sample box. These n 
loops form what is called one Monte Carlo cycle. 
A large number of Monte Carlo cycles (say a few 

thousand) is usually necessary to reach a stable 
configuration. Then a new temperature T < TO is 
fixed and the above process is repeated until a 
new equilibrium is reached. The calculation is 
stopped when no appreciable change in the spin 
configuration is noticed. 

2.2. Hamiltonian 

The Hamiltonian used for the calculation of the 
energy E (i.e. the function f mentioned above) 

may take various forms depending on the assumed 
coupling. We have chosen the simplest and more 

general form commonly accepted for the spin 
coupling. This spin Hamiltonian (see for instance 
ref. [6]) in the present version of the program 

includes three terms: 
_ a coupling term: 

our convention for the coupling constants is the 
following: J is taken negative for an antiferro- 

magnetic coupling. The two spin coupling Ham- 

iltonian is defined by H = -XC,,,,J,,S, l S, where 
(i, j) represents the summation over the pairs of 
spins of the system. The spins S, have three 

degrees of freedom (Heisenberg type). A possibil- 
ity for anisotropic coupling constants has been 

introduced. 

2.3. General structure of the program 

The program has been written to simulate the 
magnetic ordering and the behaviour under an 
applied field of any 3D cluster and 3D periodic 
structure. 

A structure is described by a so-called basic 
unit cell (b.u.c.), which can be the crystallographic 
unit cell but not necessarily. The sample used for 
simulation can be built up from one or more b.u.c. 
The boundary conditions may be of three types: 
free boundary conditions, periodic boundary con- 
ditions or mixed boundary conditions (a combina- 
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tion of free and periodic boundary conditions). 

Magnetic interactions are not limited to the nearest 
neighbours and may be established between any 

pair of magnetic atoms of the structure. The input 
of the sample size and external parameters of the 
simulation (cooling or heating rate, magnetic field, 
number of Monte Carlo cycles) is done interac- 

tively. The conversational mode has been worded 
with enough flexibility to allow an easy shift within 

the (H, T) plane for determination of magnetic 

phase diagrams. 

The data relative to the b.u.c. are stored in an 

input file. It contains the topology of the system, 
the values of magnetic interactions, anisotropy 
coefficients and spin amplitudes. One has to point 

out that the approach is essentially topological. By 

no means crystallographic positions are taken into 
account by the program. Every magnetic atom is 

assumed to be independent: no symmetry element 

is introduced in the program. If symmetries ap- 

pear in the ground state configuration of spins, 
they are only a consequence of parity in coupling 
constant values. The structure is built up from the 

stacking of unit cells along the crystallographic 
axes. The coordinates of any unit cell relative to 
the basic unit cell are obtained by a simple index- 

ing along these axes (coordinates of the b.u.c. = 

(0, 0, 0)). The NA atoms of the b.u.c. are num- 
bered from 1 to NA. Every atom has NV 

neighbours which are located either inside the 
b.u.c. or in a neighbouring cell. Every neighbour is 
identified by its number in the b.u.c. and by the 

indexation of its unit cell. A spin of the desired 

amplitude is allocated to every atom. 

A detailed description of an input file is given 
in appendix A. As a simple illustration, the input 

file concerning the kagome layer with antiferro- 

magnetic interactions between nearest neighbours 
only (see fig. 1) is provided in table 1. Technical 

details concerning the program are given in ap- 
pendix B. 

2.4. output 

The random spins are set up by a random 
generator of points located at the surface of a 

sphere of radius equal to the saturated magnetic 
moment. After NC Monte Carlo cycles at the 
actual temperature, the value and direction of spin 
attributed to each atom correspond to the mean of 
the successive configurations of the spin during 
these cycles. In fact equilibrium is not reached 

Fig. 1. The kagome layer with atom numbering and cell indexing as used in the program MCMAG (see table 1). Nearest neighbour 

interactions have been drawn (full lines). 
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Table 1 

Example of input file for MCMAG: kagomt layer with interac- 

tions between first neighbours only (fig. 1) * 

TITLE CARD 

TITLE CARD 

DEFINITION 

CARD 

ATOM CARD 

INTERACTION 

CARDS 

ATOM CARD 

INTERACTION 

CARDS 

ATOM CARD 

INTERACTION 

CARDS 

SPIN CARD 

CELL CARD 

kagomt layer 

interactions between first 

neighbours only 

30 3 

1 4 10 0 0 

( 2 2 3 -1 0 0 -1 0 0 

3 -1 0 

2 4 10 0 0 

I 1 3 1 0 0 1 0 0 1 

3 0 1 

3 4 10 0 0 

! 2 1 0 0 0 0 

I 2 1 0 1 -1 0 

13 5 

8. 8. 4. 90 90 

1 

0 -10 

0 -10 

0 - 10 

0 -10 

1 

0 -10 

0 -10 

0 -10 

0 -10 

1 

0 -10 

0 -10 

0 -10 

0 -10 

120 

* The amplitude of spins are set to 5~~. The anisotropy 

coefficients are set to + 10 K along the [0 0 l] direction in 

order to constraint the spins to lie in the (a, b) plane. 

immediately and some thermalization sweeps are 
allowed before the mean values calculation which 
is performed during the Nc-Nd last cycles (NC 

and Nd are fixed by the user). The output of spin 
configuration consists in the projection of the 
mean spins on the axis of the orthogonal reference 

coordinate system, and the standard deviation 
calculated from the spin fluctuations during the 

Nc-Nd cycles. Projection of the spins on the 
crystallographic axes may be collected, as well as 
the rotation of the whole system in order to align 
a particular spin along a given direction. 

Total magnetization of the sample is calculated, 
and also statistical values such as specific heat and 
magnetic susceptibility according to the formula 

171: 

C=((E2)-(E)*)/kT*, 

x=((M2) - (M)*)/K 

where (E) and (M) are the mean value of the 
energy and the magnetization of the system, re- 

spectively. These values are stored in an output 

file for further analysis or plotting. 

3. Results 

3. I. Simulation of magnetic models 

3. I. 1. Periodic models 

An interesting feature of the program is its 

ability to simulate any kind of 2D or 3D periodic 
magnetic model without any limitation of distance 

between interacting neighbours. As a simple illus- 
tration, we show the results of a calculation on a 

classical triangular planar XY model with interac- 
tions between nearest and next nearest neighbours 
(noted, respectively, .I, and J2). Katsura et al. [8] 
have investigated analytically this system; they 

determined the phase diagram in the J,-J2 plane 
and pointed out the appearance of a helimagnetic 
ordering inside a defined range (.I,, J,). Fig. 2 

shows the spin configuration which we obtained 
using a sample of 400 spins with .I1 = +4 and 

J2 = - 16, compared with the analytical result for 
J,/J, = -l/4 as presented by Katsura. We used 

for the simulation a relatively slow cooling rate 
from T = 100 to T = 0.4 with 0.92 as a multiplica- 

tive coefficient, performing only 350 Monte Carlo 
cycles per spin at each temperature. The simulated 
helix screw is identical to the analytical result. We 

notice the slight distortion at the edges of the 
sample due to the free boundary conditions. 

3.1.2. Cluster models 

The program is also well suited to simulate spin 

arrangement of 3D clusters of magnetic atoms. As 

an example, we have simulated the spin configura- 
tion of magnetic atoms located at the vertices of 

an icosahedron, correlated by identical antiferro- 
magnetic interactions between nearest neighbours 
only. The result is presented in fig. 3. For sake of 
clarity, we have reoriented the whole system in 
order to align one spin (spin 11 in the figure) 
along the corresponding diagonal of the icosa- 
hedron. But it is obvious that, without anisotropy, 
every spin is equivalent to each other. 



P. Lacorre, J. Pannetier / MCMAG: simulation of magnetic structures 

--I _.._- JP 

Fig. 2. (a) Ground state configuration of the triangular planar 

XY model with J,/J2 = -l/4 and J, > 0: analytical result 

(after ref. [8]); (b) result of the Monte Carlo simulation for a 

sample of 400 spins (20 x 20) with J, = 4 and J2 = - 16. Ex- 

perimental parameters: cooling rate 0.92 from T = 100 to T = 

0.4 with 350 MC cycles per spin at each temperature; free 

edges. 

The main results of the simulation are the follow- 

ing: 
_ the two spins of any diagonal are arranged 

antiferromagnetically: the center of the icosa- 
hedron is a prime inversion center i’, 

_ two neighbouring spins make an angle of about 
116O (the exact value would be 116.57O, which 

is the dihedral angle of the dodecahedron). 
Second neighbours make an angle of 63.43”, 
the subtended angle of the icosahedron. 

3.2. Prediction of magnetic structures 

The input facilities of the program allow to 
simulate models with non-trivial topology and in- 
teractions, i.e. real magnetic structures. Then the 
problem is to evaluate the main coupling con- 
stants inside the compound which would be simu- 
lated. Except when direct or indirect measure- 

61 
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* 
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Fig. 3. Result of the Monte Carlo simulation of an icosahedral 

cluster with antiferromagnetic interactions between nearest 

neighbours. Projection along the Sfold axis (top) and per- 

pendicular to this axis (bottom). 

ments have already been done on the compound 

itself, two approaches are possible to estimate the 
value of the coupling constants: experimental data 

from similar compounds and theoretical estimate. 
Among the last category, semi-empirical rules such 

as Kanamori-Goodenough rules [9,10], as well as 
model calculations (see for instance refs. [ll-161) 
may be considered. 

An important point in simulating magnetic 
structures is the choice of the sample box and 
boundary conditions: it is actually crucial for pre- 

diction. A thoughtless choice of small sample with 
periodic boundary conditions may lead, in some 

cases, to unwanted strong magnetic constraints 
and therefore to totally inadequate results. To 
avoid this risk, a sensible procedure consists in 

using large samples and free edges boundary con- 
ditions. This ought to be the general method if the 
real magnetic cell is unknown. To save calculation 
time an intermediate procedure is to work with 
medium size samples (typically multiple of two 
and three times the crystallographic cell) and peri- 
odic boundary conditions, but it precludes a priori 
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the possibility of incommensurate or helimagnetic 
arrangement. If the magnetic cell is known experi- 
mentally, a convenient choice is of course the 

magnetic cell itself. With such very small samples, 
the algorithm converges very quickly to the solu- 

tion. 

The program has been tested on many known 

magnetic structures and a few examples are pre- 
sented below. A first example is the fluoride 

Ba,Ni,F,,. It crystallizes in the monoclinic space 

group P2,/c with the following0 parameters (at 

room temperature): a = 18.542 A, b = 5.958 A, 

c = 7.821 A, /3 = 111.92”, 2 = 4 [17]. Its magnetic 
structure as determined by neutron diffraction [18] 

is shown in fig. 4a. The magnetic cell is twice the 

crystallographic one (doubling of the c axis). In a 
first approximation we will assume that the main 
magnetic interactions in this compound take place 
between nearest neighbours only. The value of the 

coupling constants in Ba,Ni,F,, can be estimated 
from those determined in other nickel fluorides 

with similar Ni-F-Ni superexchange angles, i.e. 
180 O, 130 o and 95 “. Such configurations are en- 

countered in fluorides like NiF, [19], KNiF, [20], 
RbNiF, [21] or K,NiF, [22] for which exchange 
interactions have previously been measured. From 

these results, the coupling constants in Ba,Ni,F,, 

can be estimated as Ji (95 “)/k = + 8 K, 
J,(130°)/k= -2OKand J,(180”)/k= -1OOK. 
These values imply magnetic frustration inside 
square platelets (underlined in fig. 4a) for which 

the frustration function Qk [23] is negative. It is 
reasonable to assume that the strongest constraint 

within platelets takes place at the weakest interac- 
tion. Effectively the spin arrangement is antiferro- 

magnetic whilst the coupling constant between 
nickel inside edge-sharing octahedra is expected to 

be ferromagnetic. 
In order to test the validity of this argument, 

we performed a Monte Carlo simulation of the 
magnetic structure of Ba *Ni,F,, using the above 
values of coupling constants. In absence of a 
priori information about the easy axis of magneti- 
zation in the compound, we only assigned a posi- 
tive D anisotropy coefficient along the b axis of 
the structure (rutile chains) by comparison with 
NiF,. At this point, it is worth mentioning that the 
Hamiltonian does not contain any magneto-crys- 

a 

b ‘*w -wr-------a----)~ 

: : 

ve1-n,+-% - ---L-NW. 
,’ - 

-aa ‘L -,‘vb 

,’ 
-I-+--e I3 * : 

+- _:_ 
: - - 

-+--N 
,‘ : 

--a9 -La ___. -- _____ ‘- 

-oe~~~-es-~~v+-~~ 

-- N-a, -eo- a.-_) 

--N-k----n---- 

Fig. 4. (a) Magnetic structure of Ba,Ni,F,,, as determined by 

neutron diffraction [18]. Frustrated square platelets are indi- 

cated (heavy lines) together with a rough estimate of coupling 

constants; (b) result of the Monte Carlo simulation of the 

magnetic structure of BazNisF,, using the previous coupling 

constants (no easy axis of magnetization was applied). 

talline energy term; as a consequence, the minimi- 
zation process will provide the coupling mode of 
spins but not their absolute orientation with re- 

spect to the chemical cell: this information is 
however sufficient to start the refinement of the 

magnetic structure from neutron diffraction data. 
As mentioned above, the choice of the sample box 
may be critical in some cases. Two approaches 
were possible to simulate Ba,Ni,F,,: the first one 
was to take advantage of the fact that the real 
magnetic cell exhibits a doubling of the c axis 
with respect to the crystal cell and choose the 
corresponding sample size with periodic boundary 
conditions; the second one was to proceed as if 
the magnetic cell was unknown, using a larger 
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sample with free edges boundary conditions. Both 
approaches have been tested and yield exactly the 
same results, which are presented in fig. 4b. The 
main features of the magnetic structure of 
Ba 2 Ni 3 F1,, are well reproduced: 
_ doubling of the c axis in the magnetic cell, 
- collinearity of spins, 
- antiferromagnetic arrangement of spins con- 

nected by ferromagnetic interactions inside 
square platelets, 

_ coupling modes. 
Therefore, the assumption on the coupling con- 
stants in Ba,Ni,F,, is in good agreement with the 
neutron diffraction results, in spite of the unex- 
pected arrangement of spins. 

Many magnetic compounds undergo internal 
magnetic constraints which force them to adopt 
non-collinear spin arrangement. This occurs for 
instance when magnetic ions in antiferromagnetic 
interaction are located on a triangular lattice. 
These competitions between interactions lead in 
high symmetry cases (typically hexagonal cells) 
and Heisenberg type spins to a 120” star config- 
uration of spins (see for instance refs. [24-261). 
Lower symmetry structure provide the opportun- 
ity to break the intrinsic equivalence of interac- 
tions and lead to a departure from the ideal 120” 
arrangement. This is the case for the chromium 
potassium fluoride a-KCrF, which is built up 
from infinite columns of three comer sharing 
[CrF,] octahedra (fig. 5a) [28,29]. The magnetic 
structure inside basic triangular platelets [27] is no 
longer a 120 o configuration (fig. 5b, N.D.). Super- 
exchange angles which determine coupling con- 
stants in this compound, as shown in fig. 5a, are 
the following (room temperature, from refs. 
[28,29a]): (Y = 144.6 O, p = 140.2 O, y = 149 O. It has 
been shown [30] that superexchange coupling con- 
stants between two magnetic ions (M) inside comer 
sharing anion (X) octahedra have a linear depen- 
dence on cos20 where 0 is the superexchange 
angle M-X-M. Thus in KCrF, the distribution of 
superexchange angles would be responsible for 
slightly unbalanced coupling constants which 
could be the cause of the departure from ideal 
120 o configuration of spin. Unfortunately the lack 
of experimental data concerning coupling constant 
between Cr3+ ions by superexchange path via 

4 
b 

I 
La 

3 

b) 
1 A 

2 

N.D. 

3 

A 
1 2 

M.C. 

Fig. 5. (a) Views of an infinite triangular column of [CrF,] 

octahedra in a-KCrF4 ([27] from ref. [29]); (b) spin arrange- 

ment inside a triangular platelet of KCrF, (N.D.) compared 

with the result of Monte Carlo simulation assuming the cou- 

pling constants given in the text (M.C.). 

various Cr-F-Cr angles prevents the kind of ap- 
proach we used above for the barium nickel fluo- 
ride. However, the Kanamori-Goodenough rules 
at least provide quite firm presumption about the 
sign of 90” and 180” interactions, which should 
be ferromagnetic and antiferromagnetic, respec- 
tively [9,10]. With such limited information, only 
qualitative results may be expected; they tend to 
suggest that the departure from ideal spin config- 
uration in KCrF, is mainly due to the unequiv- 
alent superexchange angles. The Monte Carlo 
simulation has been done with the assumption 
that J& = +7 K and J1soO = - 10 K, fairly rea- 
sonable values with respect to Kanamori-Good- 
enough rules (however only coupling constant 
ratios must be thought to have any significance for 
these calculations). A linear dependence of the 
coupling constants with cos28 leads in this case to 
the formulation Jo = 7 - 17 cos26, i.e. J, = -4.30 
K, Js = - 3.03 K and J, = -5.49 K. Starting 
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from these values, the result of simulation is in 

fair agreement with the neutron diffraction result, 

with a small angle (between spins 1 and 2) and 
two larger angles (fig. 5b). 

We have however to emphasize the sensitivity 
of spin arrangement to small variation of coupling 
constants: an otherwise similar simulation with 

the assumption of J&.= = + 10 K and J1soO = - 10 
K yields to a collinear magnetic structure with 

spins 1 and 2 parallel. When frustrated interac- 

tions are almost equal, slight departure from 
equivalence may imply significantly different spin 

orientations. 
In order to simulate the helimagnetic ordering 

which often needs large unit cell dimensions, we 
have introduced a new type of boundary condi- 

tions that we have called mixed boundary condi- 
tions: they correspond to free boundary condi- 
tions along one direction (typically the screw axis 

of the helix) and periodic boundary conditions for 
the other two directions. The use of these boundary 

conditions obviously implies that the screw axis of 
the helix is already known (or assumed). 

We have tested these boundary conditions by 

simulating the magnetic structure of the rutile 

P-MnO, , which is described as ordering heli- 
magnetically below 84 K with a periodicity of 

7c/2 [31,32]. The rutile structure is presented in 
fig. 6a with the three main exchange integrals 

called J,, J2 and J3. These have been measured to 
be equal to -8.8, -5.5 and 1.3 K, respectively 

1331. 
The magnetic structure of P-MnO, has been 

simulated assuming these coupling constant values 

on a sample containing 3 x 3 x 21 cells, i.e. 378 
atoms (2 atoms per cell), with the c direction as 
screw axis. The free edges boundary condition was 

applied along this direction, keeping the two others 
under periodic conditions (fig. 6b). The result of 
simulation is presented in fig. 7 (only the spin of 
the central column, i.e. cells (2, 2, n), are drawn). 
The periodicity of the helimagnetic structure of 
/?-MnO, is thus exactly reproduced. Free edges 
seem to have very little effect, except for the spins 
of edge cells themselves. At this stage, it is worth 
mentioning that a very important parameter to 
simulate large size samples is the cooling rate. Fig. 
7 illustrates this point by showing the results of 

a) 

C : . ’ 
b, ___--: -_:j;- WL J 

1: 
1 

a 

J3 

T 
FREE 

EDGE 

21 cells 

EDGE 

1 

Fig. 6. (a) The rutile structure of /3-MnO, (cationic lattice 
only) with indication of the three main coupling constants; (b) 
a perspective view of the sample (3 X 3 X 21 cells) used for the 
Monte Carlo simulation of /3-MnO, together with special 
boundary conditions (the result of the simulation is presented 

in fig. 7). 

two simulations performed with different cooling 

rates. The fastest annealing (right hand side fig- 

ure) leads to the occurrence of two chirality do- 
mains with a grain boundary (commonly encoun- 
tered in real helimagnetic compounds [34]) while a 
magnetic monodomain has grown from the slower 
one. 

These examples show that MCMAG is an ap- 
propriate tool to simulate any kind of magnetic 
structure when coupling constants are known or, 
at least, can be roughly estimated. A straightfor- 
ward application is to assist the determination of 
magnetic structures. 



P. Lucorre, J. Panneiier / MCMAG: simulation of magnetic structures 71 

a b 

Fig. 7. Monte Carlo simulation of the helimagnetic structure of 

/3-MnO, on a sample of 378 atoms (3 X 3 x 21 cells): projection 

on the (a, b) plane. Only the central column is drawn (cells 

with indexation (2,2, n)). The coupling constants are taken 

from reference [33]. Experimental parameters: (a) cooling rate 

0.92 from T= 300 to T = 0.5 with 3000 MC cycles per spin at 

each temperature and mixed boundary conditions; (b) cooling 

rate 0.90 from T = 300 to T= 0.5 with 1500 MC cycles per 

spin at each temperature and mixed boundary conditions. 

3.3. Estimation of exchange integrals 

The second example of the previous section has 
shown that the spin orientation may be extremely 
sensitive to small changes of coupling constants. 
This suggest the possibility of evaluating coupling 
constants in compounds with canted magnetic 
structure. This approach is in some respect the 
reverse of the previous one: starting from the 
magnetic structure as determined from neutron 
scattering experiments one tries to evaluate ex- 
change constants in order to obtain a simulated 
spin arrangement as close as possible to the ex- 
perimental one (in fact only ratios of coupling 
constants are reachable). We have undertaken this 
kind of evaluation for the fluoride MnFeF,, 2H,O; 
its crystallographic structure, which is of the in- 

verse weberite type [35], is illustrated in fig. 8a. 
The compound is ferrimagnetic; its magnetic 
structure has been refined from neutron scattering 
experiment. The results are presented in table 2 
N.D. [36,37]. There are 8 cations (4 Mn + 4 Fe) in 
the magnetic cell. The modes of coupling are 
ferromagnetic for the x-component of the mo- 
ments (Fx) and antiferromagnetic for the z-com- 
ponent of the Fe3+ moment (Gz). We shall assume 
that the stronger interactions take place between 
nearest magnetic neighbours, through M-F-M 
superexchange path. The canted magnetic struc- 
ture (fig. 8b) is thought to be a consequence of 
magnetic constraints inside the triangular platelets 
(underlined in the figure) involving two Fe3+ and 
one Mn*+: according to Kanamori-Goodenough 
rules, 180” d5-d5 superexchange coupling con- 
stants are expected to be antiferromagnetic, thus 
leading to a negative frustration function inside 
the platelets, i.e. to the occurrence of magnetic 
frustration. MnFeF,, 2H,O exhibits two types of 
nearest neighbours interactions: JFe_Fe and 

a) 

a b 

b) 7 Fe 

+ 

Mn 
a 

I h 
Fe 

Fig. 8. (a) Crystal structure of MnFeF,, 2H,O [38]: a frustrated 

triangular platelet is outlined; (b) spin arrangement inside a 

triangular platelet of MnFeFs, 2H,O [37]. 
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Table 2 
Results of Monte Carlo simulation (MC) of the magnetic structure of MnFeF,, 2H,O with JMn_Fc/JFc_Fe = 0.492 compared with 

the neutron diffraction refinement (N.D.) [37] 

Atom Mn(1) Mn(2) Mn(3) Mn(4) Fe(5) Fe(6) Fe(T) W8) Total mag. 

M.C. M, - 4.260 - 4.268 - 4.211 - 4.260 2.045 2.204 2.175 

MY - 0.054 -0.132 - 0.059 - 0.090 - 0.109 0.211 0.108 

M: - 0.063 -0.110 - 0.058 - 0.038 3.375 - 3.260 - 3.293 

total M 

(Pa) 

4.261 4.272 4.271 4.262 3.948 3.941 3.948 

2.006 
0.033 
3.401 2.151 

pB/mol 

3.949 

N.D. M, - 4.29 -4.29 - 4.29 - 4.29 2.13 2.13 2.13 

% 0 0 0 0 0 0 0 

M, 0 0 0 0 3.35 - 3.35 - 3.35 

total M 

(PB) 

4.29 4.29 4.29 4.29 3.97 3.97 3.97 

2.13 
0 

3.35 2.16 

pB/mol 

3.97 

J Mn_Fe. Our aim was to determine the ratio 

J Mn _ Fe/JFe _ Fe in this compound. 
In the magnetic structure, the spins lie in the 

(a, c) plane and the moments of Mn*’ cations are 

aligned along the a axis. To reproduce this fea- 

ture, we have assigned a positive D anisotropy 
coefficient along the b axis to Fe3+ spins (in order 

to constraint them to lie in the (a, c) plane) and a 
negative D coefficient along a axis to Mn” spins 

(to align them along a). However, these coeffi- 
cients do not add further constraints on frustrated 
platelets: they only allow direct comparison of the 

results with the real magnetic structure. We have 
arbitrarily fixed the JFe_re constant to - 6 K, a 
reasonable value for 180 o Fe3+-F-Fe3+ superex- 

change, and adjusted, by trial and error, the J,,_ re 
constant in order to reproduce the experimental 

spin direction. Spin amplitude was fixed to 
saturated magnetic moments as determined by 

neutron diffraction at low temperature, i.e. 3.97~~ 
for Fe3+ and 4.29~~ for Mn2+. The best result (see 

table 2 M.C.) was obtained for JMn_re coupling 
constant equal to -2.95 K. From this result, we 
are able to estimate the ratio JM,_ Fe/JFe_Fe in 
MnFeF, .2H,O as 2.95/6 = 0.49 (remanent mag- 
netization of both Monte Carlo simulation and 
neutron diffraction refinement are in good agree- 
ment with measurement under applied field 

PWW 
This example shows that coupling constant 

ratios can reasonably well be estimated using this 

program especially in case where the magnetic 
structure is non-collinear and when it can be 

assumed that a limited number of strong interac- 
tions occur in the solid. 

3.4. Dynamical behaviour under applied field 

This section is concerned with the possibilities 
offered by the program to study the influence of 

magnetic field on magnetic structures, mainly an- 
tiferromagnetic structures which provide the 
richest range of behaviour. As a matter of fact it is 

well known (see for instance ref. [40] and refer- 
ences therein) that a magnetic field applied along 
the easy magnetization axis of an antiferromag- 

netic substance induces a reorientation of spins 

called metamagnetic or spin-flop transition. The 

program gives the possibility to study this be- 
haviour on any kind of model. 

First we shall examine the result of simulation 
concerning models which have already been 

studied analytically in the literature. Let us begin 
with a chain of Heisenberg spins in antiferromag- 
netic interaction. This elementary model provides 
a good illustration of the spin-flop transition which 
corresponds to the abrupt reversal of the two AF 
sublattices of spins perpendicularly to the field at 
a critical field H,. The two orientations of spin 
make an angle which progressively decreases in an 
increasing field until saturation which occurs at a 
higher field HO. The occurrence of metastable 
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states near the spin-flop transition is responsible 
for hysteresis at the transition when increasing 
and decreasing fields are applied [41]. If the am- 
sotropy of the system is strong compared to the 
exchange, the spin-flop mechanism is replaced by 
another one, the metamagnetic transition, which is 
the direct reversal of one sublattice parallel to the 
other. We present below the case of a moderately 
anisotropic system. The scaling stiffness energy of 
such a 1D anisotropic Heisenberg antiferromagnet 
has been studied by Cieplak et al. [42]. We choose 
for our simulation the values of coupling constant 
and anisotropy coefficient already used by these 
authors for their study, i.e. J = - 1 and D = - 0.2; 
the simulation was performed on a sample of 150 
spins of amplitude S = 1. With these values the 
critical fields for hysteresis are equal to Hi = 1.08 
(decreasing field) and H2 = 1.33 (increasing field) 
as calculated by Cieplak, and the saturation oc- 
curs at H3 = 3.6. 

T= 10-l 

T= 5.10-z 

We present in fig. 9 the results of our simula- 
tion (magnetization curves) for this system at dif- 
ferent temperatures. We notice the very good 
agreement, at low temperature (T= 5 X 10-3), 
with the calculated values of critical fields (at 
T = 0). At higher T, one observes first the narrow- 
ing of the hysteresis cycle (T = 10P2) then its 
vanishing (T = 5 x 10w2) and the smearing out of 
the transition (1st order to 2nd order) (T = 10-l). 

YH2 H3 

Fig. 9. Magnetization versus applied field during the simula- 
tion of the 1D Heisenberg AF model at various temperatures. 
H,, H2 and Hx are the transition fields determined analyti- 

cally for this system [42]. 

The second example is less trivial and corre- the vicinity of the hysteresis where the mesh was 
sponds to the XY anisotropic triangular lattice lowered to 0.01 and 0.05, respectively. 30000 
with antiferromagnetic interactions (AFT model). Monte Carlo cycles were performed at each point 
A complete study of the Heisenberg anisotropic (the 10000 first ones omitted). Our results are in 
AFT model under applied field (suitable to the very good agreement with the previous one con- 
XY AFT model) has been performed by Miyashita cerning the anisotropic coupling part and we shall 
[43] both analytically (ground states) and by Monte not detail the results any further. However, our 
Carlo simulation (evolution with temperature). results with the single ion anisotropy model differs 
This study involved both anisotropic coupling and slightly from those presented by Miyashita. They 
single ion anisotropy. In order to test the validity are both summarized in fig. 10, where d denotes 
of the field implementation in our program and the anisotropy coefficient and h the applied field 
the accuracy of anisotropic coupling constants, we amplitude along the anisotropy axis (for sake of 
have undertaken a simulation of the system with comparison we have adopted the notation of 
the analytical results of Miyashita as reference. Miyashita for d and h, i.e. d = -D where D is 
Our simulation was performed on an elementary our anisotropy coefficient as defined in section 2.2 
sample of 3 spins in order to reproduce exactly the and h = H defined in section 2.2 = H/3 in 
analytical conditions, at temperature T = 5 X 10e4. Miyashita’s paper). Four ground states may be 
The field/anisotropy space was mapped with a isolated which have been called a, b, d, and e in 
mesh of 0.1 in field and 0.1 in anisotropy except in ref. [43] (schematized in fig. 10). Our results con- 
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d 
t 

h 
3 

Fig. 10. Calculated phase diagram (h, d) of the XY aniso- 

tropic AFT model under applied field at T = 5 X 10 4. The 

hatched area denotes occurrence of hysteresis. The broken lines 

correspond to the analytical results presented by Miyashita 

[43]. The dotted line is the trace of the analytical calculation 

for the transition b cf d with d < d, = 0.15. a, b, d and e are 

the notation of the different spin configurations in ref. [43]. 

cerning the transitions a ++ b, d t) e and b ti d for 
low anisotropy are identical to the analytical ones. 

They disagree about transitions b ++ e, and b * d 
for strong anisotropy values, which correspond to 
the first order transitions of the system (Miyashita 

M/M, 

t 

results are indicated by broken lines in fig. 10). In 

our simulation the transition b tf e is found to be 
independent of the strength of anisotropy and 
always occurs at h = 2; this is at variance from 

Miyashita’s results which show a dependence of 

the form h = 3 - 2d. We also found evidence of 
hysteresis around the b +, d transition for high 

values of d(d > d, = 0.15), a point which had not 
been noticed by Miyashita. We have to mention 

that the metastable transition b ++ d we observe 

upon increasing field fits well, for h < 2, to the 

equation of the stable transition determined by 
this author for weak anisotropy (see fig. 10). No 

hysteresis was found at the b * e transition. The 

apparently quick decrease of hysteresis loop with 

temperature could possibly explain that this be- 
haviour was not noticed by Miyashita. 

Our last example corresponds to the square 
planar lattice with unequal AF interactions (we 
shall examine the thermal behaviour of such a 

system in the next section). The unit cell contains 
4 atoms numbered 1 to 4 (see insert in fig. 11). 
Spin 1 interacts with its 4 neighbours via weak AF 

coupling constants (Ji = -0.1 K); all three others 
are strongly coupled with each others ( J2 = - 10 

K). In this model the nature of interactions in- 

0 50 100 150 200 250 

Fig. 11. Evolution of the magnetization along the applied field in the square lattice with unequal AF interactions (presented in insert) 

as simulated by MCMAG. The three spins schematize the sublattices A, B and C, respectively. 
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direction 

f 
of field 

Fig. 12. Spin configurations during the simulation of the 
square lattice with unequal AF interactions under applied 

field. 

induces 3 different spin sublattices called A, B and 
c: 
_ sublattice A is formed of spins of type 1, in 

weak interaction with surrounding spins (4 X 0.1 

K), 
- sublattice B is built up of spins 2 and 4, which 

undergo 2 weak and 2 strong interactions with 
their neighbours (2 x 0.1 K + 2 x 10 K), 

_ sublattice C is formed of spins 3 which are 
strongly correlated (4 x 10 K). 

The anisotropy coefficient D = - 2 K is strong 
compared to the weak interactions (-0.1 K) but 
weak compared to the strong ones (- 10 K). This 
point must be responsible for a peculiar behaviour 
under magnetic field, that we have studied with 
the program. The steps of the process are il- 

lustrated by the corresponding spin arrangement 
in fig. 12. The field was applied along the direc- 
tion of anisotropy of sublattice A, and progres- 
sively increased then decreased. Fig. 11 shows the 
evolution of magnetization in the direction of field 
during this process, together with a schematic 
representation of the relative configuration of the 
three sublattices. The first transition is of the 
metamagnetic type, with an abrupt reversal of 
sublattices B and C toward sublattice A, which 
stays along the field direction (fig. 12-2). This is a 
consequence of the weak coupling of spin 1 with 
neighbouring spins (namely sublattice B) com- 
pared to the strong anisotropy. We have already 
mentioned that in this case, a metamagnetic tran- 
sition occurs. Coupling between sublattices B and 
C remains unchanged. The second transition (fig. 
12-3) concerns sublattices B and C and is of 
spin-flop type, owing to the strong exchange be- 
tween these sublattices compared to the ani- 
sotropy. Until saturation (fig. 12-4) the angle be- 
tween spins of sublattice B and field is smaller 
than the angle of sublattice C with field (sublattice 
B contains twice as many spins than sublattice C). 

Upon decreasing field we notice the occurrence 
of two hysteresis cycles (fig. 11). In the vicinity of 
the high field transition, the change from a canted 
configuration of spins to the collinear one is con- 
tinuous. The hysteresis at the metamagnetic tran- 
sition is a consequence of the alignment of the 
applied field along the direction of spins 1, the 
less strongly coupled sublattice. The energy neces- 
sary to reverse this sublattice is smaller and the 
transition takes place at a lower field. The zero- 
field configuration is the opposite of the starting 
configuration. 

3.5. Dynamical behaviour with temperature 

All previous applications have been restricted 
to very low temperatures, the “cooling” of the 
sample being only a technical trick (simulated 
annealing) to obtain the ground state configura- 
tion of the system, starting from complete dis- 
order. In principle, the use of a proper Hamilto- 
nian for a given system should allow to determine 
its ordering temperature [44]. A method to locate 
the phase transitions would be to calculate the free 
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energy F of the system. However, the important 
sampling method of Metropolis yields estimates of 

extensive quantities such as internal energy E and 
magnetization but does not give directly any infor- 

mation on the entropy S nor on the free energy of 

the system F = E - TS. This results from the fact 

that entropy is a function of the unknown prob- 

ability with which the configurations of the system 
are generated. This problem has received consider- 

able attention in the literature and various meth- 
ods have been suggested (see for instance refs. 

[45-491). However, most of these methods are 
somewhat unpractical or rather computer time 

consuming and have not been implemented yet in 

MCMAG. 
Another (technical) problem arises from the 

limitations of the computer; indeed, calculations 
are performed for systems of finite size and it has 

long been known that reliable information from 
Monte Carlo work on the behaviour of an experi- 
mental (infinite) system is obtained only if the 
effect of the sample size is carefully considered 

[50]; for instance, in the case of the simple-cubic 

Ising lattice, it has been shown [51] that the order- 
ing temperature has an asymptotic dependence on 
the sample dimension (finite edges and periodic 

boundary conditions lead to different asymptotic 
behaviours); one may also expect the topology of 

the lattice and the values of the coupling constants 
to influence this behaviour. Generally speaking, 
the use of small simulation box smears out the 
ordering transition and shifts the temperature. 

For the kind of applications considered in this 
paper, an additional difficulty arises from the 
limited information usually available about the 

values of the coupling constants and anisotropy 
coefficients; moreover, when available in the liter- 

ature, these parameters have been determined at a 
single (usually low) temperature although they 
may vary noticeably with temperature, as evi- 
denced in a few systems (see for instance refs. 
[52-541). This possible variation of the exchange 
and anisotropy parameters is not taken into 
account in the current version of the program. 

Although the program MCMAG can in princi- 
ple perform simulation of fairly large lattices, our 
aim was essentially to provide a tool to help at 
determining or predicting real magnetic structures 

which can be achieved by working with fairly 

small (and inexpensive) simulation samples. As a 

consequence, these calculations will only yield 
qualitative information on the temperature depen- 

dent behaviour of the sample (in particular, the 
sample behaviour in the vicinity of a phase trans- 

formation must be considered with caution). In 

spite of this limitation, such simulations can be 
used to account for dynamical effects encountered 

during thermal ordering. This aspect will be il- 

lustrated in this section by three examples, taken 
from results of our laboratory. 

The first one concerns the above example of 
Ba,Ni,F,, for which it can be seen from simu- 

lated susceptibility curve (fig. 13a) that the calcu- 
lated ratio TN/d, = -0.62 is close to the experi- 

mental one (-0.71). The simulated specific heat 
curve is shown in fig. 13b. 

The second example is concerned with the in- 

fluence of topological frustration on ordering tem- 
perature. It has already been pointed out, both 
experimentally [55] and analytically [56-581 that 

magnetic frustration lowers the critical tempera- 
ture. A very good illustration is provided by the 
polymorphism of iron III fluoride. Under ap- 

propriate synthesis conditions, FeF, crystallizes 
with three different forms: a distorted perovskite, 

an hexagonal tungsten bronze structure type 
(H.T.B.) and a pyrochlore type [59,60]. All of 
them are essentially antiferromagnets (the per- 

ovskite form of FeF, is a weak ferromagnet) with 
drastically different NCel temperatures for the per- 
ovskite form orders at 365 K, the H.T.B. form at 
110 K and the pyrochlore form below 20 K [55]. 

The superexchange Fe-F-Fe angle decreases 
slightly [55] from the perovskite (152.15O) to the 

pyrochlore structure (141.65 o ), but this variation 
is by far too small to explain such differences. The 

examination of Fe3+ subnetworks (f;,. 14 left part) 
shows that the high TN form is built up from 
unfrustrated square platelets, while H.T.B. form 
exhibits both square and triangular platelets and 
pyrochlore form only frustrated triangular plate- 
lets. Thus the frustration rate grows from high TN 
to low TN form and frustration is believed to be a 
likely explanation for the lowering of ordering 
temperature. 

We have undertaken a magnetic Monte Carlo 
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b) 

II 

Fig. 13. (a) Experimental reverse susceptibility curve versus temperature for Ba,Ni F s to (left, from ref. [17]) compared to the 

simulated one (right); (b) simulated specific heat curve versus temperature for Ba,Ni,Fta. Simulation parameters: sample: 1 X 1 X 2 

cells (24 spins); periodic boundary conditions; 30000 Monte Carlo cycles per spin at each temperature, the 10000 first ones omitted 

for the mean values calculation. 

simulation of the three forms of FeF, in order to magnetic moments also undergo a substantial re- 

assess the validity of the previous argument. The duction in the frustrated forms). Periodic boundary 

samples used for simulation were built up from 48 conditions were applied on all three samples. The 

atoms for each form. All (nearest neighbour) in- results of simulation are presented in the right 

teractions were set to the same (negative) value; to hand part of fig. 14. The evolution of the resultant 

test the only influence of topological frustration magnetic moment of an iron (III) site is plotted 

the spin amplitudes were also kept equal (in fact versus temperature for each structure. The dif- 
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T,=365K 

T,,lIOK 

Pyrochlore 
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T,=20K 
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-T 

Fig. 14. Correlation between ordering temperature and frustra- 

tion in the three crystalline forms of FeF,. The left part of the 

figure provides a description of the Fe3+ sublattice of each 

structure where non-frustrated (heavy lines) and frustrated 

hatched) cycles are outlined (from ref. [55]). The right part of 

the figure gives Monte Carlo results of the temperature depen- 

dence of the magnetic moment of one site during the cooling, 

with the same temperature scale for each form. Simulation 

parameters (for each structure): sample of 48 spins; 15000 MC 

cycles per spin at each temperature from which the 5000 first 

ones were omitted in statistics; periodic boundary conditions. 

ference between ordering temperatures is at least 
very large; it unambiguously shows that frustrat- 
ing topology is the main responsible for this ef- 
fect. 

A third example is provided by the fluoride 
NaMnFeF,, which crystallizes in a trigonal cell 
(a = 9.041(2) A, c = 5.004(2) A) [61]. The stacking 
of atoms in term of coordination polyhedra is 
shown in fig. 15. The magnetic ordering takes 
place below TN = 45 K. A spontaneous magneti- 
zation appears during cooling, which exhibits a 
peculiar curvature [62], passing through a maxi- 

b 

Fig. 15. The crystal structure of NaMnFeF, (from ref. [61]). 

Hatched octahedra surround Mn2+. Two Fe3+ sites (la and 

2d) are present as well as two different coupling constants 

J,w W-W ( -) and J,,.(Mn-Fe) (---). 

mum value at about 32 K and decreasing to zero 
at lower temperature (fig. 16b left). This evolution 
is confirmed by Mijssbauer measurements: the 

hyperfine fields variation versus temperature shows 
that the moment of Fe(2d) site saturates at a lower 

temperature than Fe(la) (fig. 16a left). This effect 
has been referenced to as “soft spin” behaviour. 
At low temperature the magnetic structure is that 
of a classical antiferromagnet, with magnetic mo- 
ments of Fe3+ cations oriented antiparallel to the 

Mn2+ ones, along the c axis [63]. 
Clearly NaMnFeF, is not submitted to any 

magnetic frustration. The two nearest neighbour 
interactions (between Mn2+ and Fe3+) are un- 

derlined in fig. 15. One involves a 90” ds-d5 
superexchange mechanism, while the other follows 

a 180” superexchange path. Kanamori-Good- 
enough rules predict that the first one must be 
weaker than the second. An explanation of the 

magnetic behaviour of NaMnFeF, could be the 
unbalanced values of these interactions. We tried 
to shed light on this point by simulating the 
magnetic behaviour of this compound with MC- 
MAG. In agreement with Kanamoti-Goodenough 
rules, J,,,O(Mn-Fe) was set to - 3 K and 
JsoO(Mn-Fe) to -0.5 K. Results are given in fig. 
16 (right parts). Magnetic moments of la and 2d 
sites show a simulated evolution versus tempera- 
ture very similar to the experimental one, as does 
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Fig. 16. (a) Hyperfine fields at Fe(la) and Fe(2d) in NaMnFeF, (taken from ref. [63]) (left) compared to the magnetic moments as 
simulated by MCMAG (right); (b) measured and calculated spontaneous magnetization in NaMnFeF, (left) compared to the Monte 

Carlo result (right). 

the remanent magnetization. Therefore no ad- 
ditional hypothesis than the commonly accepted 
ones appears to be needed to explain this “soft 
spin” behaviour. 

A more pronounced effect has been simulated 

with a topology corresponding to the compound 
/3-LiMnFeF,, which undergoes an “idle spin” be- 
haviour [64]. We illustrate this behaviour with the 

simple 2D square model with unequal AF interac- 
tions, which has been investigated under magnetic 
field in the previous section. In this example, the 
coupling constant between spin 1 and its 
neighbours is an hundred times weaker than the 
coupling constants connecting other spins. In such 

a system, it appears that sublattices have different 

ordering temperatures (fig. 18): the sublattice 1 
orders at a lower temperature than the three others 

(fig. 17). A similar phenomenon occurs in /3- 
LiMnFeF,. These results emphasize the assump- 
tion that differences of magnitude between ex- 

change integrals may be, in some cases, the origin 
of departure in magnetic subnetwork saturation. 

In conclusion to this section, we can point out 
that, even if the absolute determination of order- 
ing temperature is usually not possible, the above 
examples show that the program can efficiently 
reproduce the qualitative behaviour of a magnetic 
structure upon cooling. 
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TI 

7’3 

Fig. 17. Monte-Carlo simulation results of the square lattice 

with unequal AF interactions (“idle spin” behaviour). Spin 1 is 

weakly coupled with its neighbours. The four views correspond 

to the temperatures noted by arrows in fig. 18. 
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1 

spin 1 

4. Conclusion 

The main advantage of this program is its 
ability to accept any kind of lD, 2D or 3D 
topology provided that it presents a periodic or 

cluster arrangement. The absence of limitation in 
interacting distance should allow to study com- 

plicated systems. The actual form of the Hamilto- 
nian is quite simple, but more sophisticated for- 

mula could easily be introduced without changing 

the general structure of the program. As a future 
development, random or distributed exchange in- 

tegrals could be introduced in order to simulate 
spin glass behaviour on any kind of topology, as 

well as local modification of some integrals to test 

the influence of impurities in a sample. 
Over the past years, special attention has been 

focussed on model calculation of coupling con- 

stants in solids, based upon geometrical considera- 
tion [11,30]. In a first step, the program could 
provide an opportunity to test the validity of these 

models in non trivial cases (i.e. when competing 
interactions occur). A more advanced stage. and 

perhaps more Utopian view, would be the direct 
simulation of magnetic structures from crystallo- 
graphic data only. 
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Fig. 18. Effective moment of spin 1 and spin 2 during the 

cooling of the square lattice model with unequal AF interac- 

tions. Spin 1 orders at a lower temperature than spin 2 (“idle 

spin” behaviour). The arrows indicate the four temperatures 

corresponding to the configurations drawn in fig. 17. 
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Appendix A. Description of an input file for 
MCMAG 

The input parameters are defined as follows: 

NA 

JCOD 

NM 

NAT 

NV 

total number of magnetic atoms in 
the sample cell 
code for interactions: JCOD = 0 

for isotropic interactions 
JCOD = 1 for anisotropic interac- 

tions 
number of formula units per cell 

(only to scale results to mole units) 
index of a given atom 

total number of neighbours of the 

atom NAT 

D 

Dx, Dy, Dz 

NAV 

Av, Bv, Cv 

J 

Jx, Jy, Jz 

NI, NF, S 

A, B, C 
AA, AB, AG 

anisotropy coefficient for the spin 

of atom NAT 

direction of the anisotropy for spin 
NAT 

index of a neighbour of atom NAT 

relative coordinates of the cell in 
which atom NAV is located 
(0, 0, 0 = basic unit cell) 
value of the isotropic interaction 
J(NAT, NAV) in kelvin 
components of the anisotropic in - 
teraction J(NAT, NAV) in kelvin 

amplitude of the spins of atom 

number NI to NF is equal to S 
(NF ( NA) 

unit cell lengths 

unit cell angles 

The input file cards are the following: 

CARD 

TITLE CARD 
DEFINITION CARD 
ATOM CARD 
INTERACTION CARD 

SPIN CARD 

CELL CARD 

FORMAT 

20A4 
free 
free 
free 

free 

free 

PARAMETERS 

NA, JCOD, NM 
NAT, NV, D, Dx, Dy, Dz 
NAV, Av, Bv, Cv, J if JCOD = 0 
NAV, Av, Bv, Cv, Jx, Jy, Jz if JCOD = 1 

NI, NF, S 
A, B, C, AA, AB, AG 

Table 1 provides a simple example of input file, 
according to the illustration of fig. 1. 

Appendix B. Technical details 

The program is written in Fortran 77 language 
and has been developed on the central computer 
VAX-8650 of the Institut Laue Langevin (Greno- 
ble, France). Random numbers are generated by 

the random number generator of the computer 
and by the subroutine RAN3D of the mathemati- 
cal library of the CERN, which provide random 
points at the surface of a sphere. The memory size 
requested by the program is highly dependent on 
the upper limit of sample size. It may be very 

roughly expressed as 50 + 0.082N kbytes, where 
N is the maximum number of spins in a sample. 
The CPU time per Monte Carlo step is dependent 
not only on the sample size, but also on the 
number of neighbours per spin. As an indication, 

we give the calculation time required for two 

examples presented in this paper. One thousand 
Monte Carlo steps request on the VAX-8650: 
- 3.3 s of CPU time for a sample of 1 X 1 X 2 cells 

of Ba,Ni,F,, (i.e. 24 spins, each of them with 4 

to 6 neighbours) 
_ 101 s of CPU time for a sample of 3 X 3 X 21 

cells of /l-MnO, (i.e. 378 spins, each of them 
with 14 neighbours). 

The program is available from the authors on 
request. 
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