
RelaxSE
User’s Manual

Elisa Rebolini1 and Marie-Bernadette Lepetit1,2
1 Institut Laue Langevin, Grenoble, France
2 Institut Néel, CNRS, Grenoble, France

June 18, 2021

1 Code description

The RelaxSE codedoes a fully-decontracted Multirefrence Configuration Interaction (MRCI) calculation using one of
the following methods

• SAS+S : single excitations on all determinants of a reference space built as in the SAS+S method [1], that is

– a selected set of determinants (included into a formal Complete Active Space), denoted as REF0,

– all CAS→CAS single excitations from all REF0 determinants,

– all LIGO→CAS single excitations from all REF0 determinants,

– all CAS→LIGV single excitations from all REF0 determinants,

– all LIGO→LIGV single excitations from all REF0 determinants,

• MRSCI : single excitations on all determinants of a selected reference space (included into a formal Complete
Active Space);

• MRSDCI : single and double excitations on aall determinants of selected reference space (included into a formal
Complete Active Space);

• CAS+S : single excitations on all determinants of a Complete Active Space;

• CAS+SD : single and double excitations on all determinants of a Complete Active Space;

• CAS+DDCI : single and double excitations from the Difference Dedicated Configuration Interaction space [2–
4], on all determinants of a Complete Active Space.

2 Code citation

Please cite the RelaxSE code as
Elisa Rebolini and Marie-Bernadette Lepetit, The Journal of Chemical Physics 154, 164116 (2021).

1



3 Input description

3.1 Input files

The files required by the RelaxSEcode are the following.

Fichiers Contient

INPUT : the input file

prefix.ref0 : the REF0 short list of determinants. From each determinant in prefix.ref0 all other
determinants to get the desired spin configurations will be generated.

prefix.TraOne : the TraOne frile issued from MOTRA.

prefix.TraInt : the TraInt frile issued from MOTRA.

prefix.restart : (optional) the wave-function file for restarts.

3.2 Output files

The files generated by the code are

Fichiers Contient

prefix.out : the output file.

prefix.det : (optional) the list of determinants in human readible format.

prefix.bdet : the list of determinants in binary format.

prefix.sass : sass information file.

prefix.restart : the wave-function file for restarts.

3.3 The INPUT File

This file is divided in several Fortran namelists. Let us remember that fortran is insensitive to case, except for file
names. The character case in the following namelist are only for better understanding of the variable purpose. A
Fortran namelist should be given as follow

&namelist_name
param1= x, param2=y, ...

&end

The required namelists are the following ones

• SassInp
• InfomMolcasInp
• OrbInp

2



• VecInp
• DavidInp
• PropInp

SassInp : dedicated to general informations.

Mot clef Signification

prefix : prefix for all code files except INPUT.

print det : (optional, default .false.) to print the determinants list in prefix.det.

iprint : (optional, default 0) printinng options.

• 0: no debug print
• 1: print individual block timings
• 2: print the Fock matrix

method : (optional, default SAS+S) method for determinant generation.

• SAS+S : SASS method.
• CAS+S : complete active space + single excitations on all determinants of the

CAS.
• CAS+SD : complete active space + single and double excitations on all de-

terminants of the CAS.
• CAS+DDCI : complete active space + single and double excitations belong-

ing to the difference dedicated configuration interaction method.

sizebatch : (optional, default 40) size of blocks for MPI calculations. Recommended size for
large calculations = number of OpenMP threads.

restart : (optional, default .false.) to restart a calculation from a previous job, file
prefix.restart needs to be present .

Typical exemple.

&sassinp
prefix="cuo",
sizebatch=20,
method="SAS+S"
&end

InfoMolcasInp : dedicated to provide informations on group symmetry, usually contained in the MOLCAS RunFile.

Mot clef Signification

NIrrep : number of irreducible representations in the symmetry group.

Ntot : total number of orbitals.

iIrTb : group multiplication table.

iChTb : group character table.

Typical exemple.

3



&infomolcasinp
nirrep=1,
ntot=118,
iIrTb(1,1) = 1,
iChTb(1,1) = 1
&end

OrbInp : dedicated to orbitals information.

Mot clef Signification

NOrb gel : vector, number of frozen orbitals.
NOrb occ : vector, number of occupied orbitals.
NOrb ligo : vector, number of occupied bridging orbitals.
NOrb act : vector, number of active/magnetic orbitals.
NOrb ligv : vector, number of virtual bridging orbitals.
Norb virt : vector, number of virtual orbitals.
NOrb del : vector, number of deleted orbitals.

Typical exemple.

&orbinp
norb_gel = 2,
norb_occ = 38,
norb_ligo = 2,
norb_act = 2,
norb_ligv = 0,
norb_virt = 70,
norb_del = 4,
&end

VecInp : dedicated to information on the seaked vectors.

Mot clef Signification

NRef0 : number of REF0 determinants to be read in prefix.ref0.
NElact : number of active/magnetic electrons.
NVec : number of desired eigenstates.
Stot : 2S + 1, S spin of the seaked states (default stot=1). Used only to generate the

complete REF0 determinants list.
Sz : 2Sz , the spin sector in wich the diagonalisation takes place.
vec irrep : (default 1) the irreducible representation of the seaked vectors.

Typical exemple.

&vecinp
stot=1,
sz=0,
vec_irrep=1,
nvec=2,
nref0=1,
nelact = 2
&end

4



DavidInp : (experts) dedicated to the Davidson procedure fine tuning.

Mot clef Signification

SizeHeffDavidson : (optional, default 10) SizeHeffDavidson × NVec is the size of the David-
son matrix. The code memory allocation should be at least 2 × SizeHeffDavid-
son × NVec × 8 bytes.

NIterDavidson : (optional, default 100) maximum number of Davidson iterations.
tol orth : (optional, default 10−15) Schmidt’s orthogonalisation maximum error.
tol norm : (optional, default 10−15) normalisation maximum error.
tol conv : (optional, default 10−8) convergence criterium (energy equivalent).
iter0 : (optional, default 0) last iteration number of the previous run in case of a restart.
conv ener : (optional, default .false.) activate the convergence on energy in addition to

vectors.

Typical exemple.

&davidinp
&end

4 PROP input description

The PROP computes properties from the wave functions issued from the RelaxSE code.

It always prints out the projection of the RelaxSE wave functions on the CAS.

This is presently the only property implemented.

4.1 Input files

The files required by the PROP code are the following.

Fichiers Contient

INPUT : the input file (same as the RelaxSEcode + &propinp namelist

prefix.bdet : the list of determinants in binary format.

prefix.sass : sass information file.

prefix.restart : (optional) the wave-function file for restarts.

4.2 Output files

The files generated by the code are

Fichiers Contient

prefix.outprop : the output file.

5



4.3 The INPUT File

This file is divided in several Fortran namelists. The same namelists as for the RelaxSE calculation and an additinal
namelist specific for properties calculations.

SassInp : identical to the RelaxSE calculation one.

InfoMolcasInp : identical to the RelaxSE calculation one.

OrbInp : identical to the RelaxSE calculation one.

VecInp : identical to the RelaxSE calculation one.

DavidInp : identical to the RelaxSE calculation one.

PropInp :

Mot clef Signification

nprop : number of properties to be computed in addition to the printing of the RelaxSE
wave functions projection on the CAS.

whichprop : list of the nprop keywords of the properties to be computed

Typical exemple.

&propinp
nprop=2
whichprop = ’lcoef’, ’dens’
&end

5 Code performances

The RelaxSE code uses a direct algorithm in order to treat large numbers of determinants (typically up to 108, 109),
i.e. each matrix element is recomputed on-the-fly.

The determinants are divided in 9 blocks, denoted DNexc
Nel , where Nel is the number of additional electrons in the active

part with respect to the REF0 configurations, and Nexc is the number of additional excitations outside of the active
space. The RelaxSE code has both MPI and OpenMP parallelization driven both by integral and determinant blocks.
The MPI parallelisation is done on the pair integral-kind / determinant-block. When the determinant blocks are very
large, it is possible to divide the calculation into smaller MPI parts by batching the determinants. However, the gain is
not systematic as the integrals are read from disk for each MPI process and the overhead can be large.

Within each MPI process an OpenMP parallelisation is done on the outer particle or hole loop.

For an optimal use of the code the user should adjust the number of MPI precesses, OpenMP threads and the size of
the batches according to her/his problem and computer system. In order to guide the user for such choices we provide
below performance testing for the most typical cases. These data are taken from ref. [5].

6



Table 1: Orbital partitioning for the test calculations.

Test set nocc nligo nact nligv nvirt ndet

LIGO

49 2 8 0 140 30 267 828
47 4 8 0 140 53 017 324
45 6 8 0 140 74 811 684
43 8 8 0 140 95 650 908

LIGV

51 0 8 2 138 30 721 372
51 0 8 4 136 54 531 036
51 0 8 6 134 77 992 188
51 0 8 8 132 101 104 828

20 40 60 80 100
Millions determinants

0

10

20

30

T
o

ta
l 

C
P

U
 t

im
e 

p
er

 i
te

ra
ti

o
n

 (
h

)

Batch 40 - ligo

Nobatch - ligo

Batch 40 - ligv

Nobatch - ligv Figure 1: Total CPU-time as a function of the number of deter-
minants for either occupied (ligo) or virtual (ligv) ligand orbitals.
Calculations were performed with 4 or 6 MPI processes, 10 to 40
OpenMP threads and with (circles) and without (stars) batching
of the determinants.

10 20 30 40
Number of OpenMP threads

1

2

3

4

O
p
en

M
P

 s
p
ee

d
u
p

ligo 

ligv 

6 MPI processes - No batch

83%

78%

70%

Figure 2: OpenMP speedup compared to calculations with 10
OpenMP treads. The number of MPI processes is 6, the batching
of the virtual orbitals was turned off.

References
[1] A. Gellé, J. Varignon, and M.-B. Lepetit, EPL (Europhysics Letters) 88, 37003 (2009). 1

[2] J. Miralles, J. P. Daudey, and R. Caballol, Chem. Phys. Lett. 198, 555 (1992). 1

[3] V. M. G. et al., Chem. Phys. Lett. 238, 222 (1995).

[4] V. M. Garcı́a, M. Reguero, and R. Caballol, Theor. Chem. Acc. 98, 50 (1997). 1

[5] E. Rebolini and M.-B. Lepetit, The Journal of Chemical Physics 154, 164116 (2021), URL https://doi.
org/10.1063/5.0045672. 6

7

https://doi.org/10.1063/5.0045672
https://doi.org/10.1063/5.0045672


4 8 12 16
MPI processes

1

2

3

4

M
P

I 
S

p
ee

d
u
p
 

160 320 480 640

Total number of proc.

ligo

ligv

Figure 3: MPI speedup compared to a calculation with 4 MPI
processes. The number of OpenMP threads is 40, as well as the
size of the batches.

8


	Code description
	Code citation
	Input description
	PROP input description
	Code performances

